Uy itining kelib chiqishi - Origin of the domestic dog

It 2700-40.000 yil oldin, hozir yo'q bo'lib ketgan bo'rilar populyatsiyasidan ajralib chiqqan Oxirgi muzlik maksimal darajasi,[1] qachon ko'p mamont dasht sovuq va quruq edi.

Ning kelib chiqishi uy iti itni o'z ichiga oladi genetik divergensiya bo'ridan, uning xonadonlashtirish va uning rivojlanishi it turlari va it zotlari. It it a'zosi bo'riga o'xshash kanidlar va birinchi tur va yagona yirik edi yirtqich xonakilashtirilgan bo'lishi.[2][3] Genetik tadqiqotlar shuni ko'rsatadiki, itlar va zamonaviy bo'rilar displey o'zaro monofil (alohida guruhlar), bu itlarning genetik jihatdan har qanday tirik bo'ri populyatsiyasiga yaqin emasligini va itning yovvoyi ajdodi yo'q bo'lib ketganligini anglatadi.[4][2] Yo'qolib ketgan Kech pleystotsen bo'ri itning ajdodi bo'lishi mumkin,[3][1] itning o'xshash kulrang bo'riga o'xshashligi natijasidir genetik aralashma ikkalasi o'rtasida.[1] 2020 yilda, a adabiyot manbalarini haqida umumiy ma'lumot; Adabiyot sharhi Kanidlarni xonakilashtirish zamonaviy itlar bir xil nasldan naslga o'tmaganligini ta'kidladi Kanis zamonaviy bo'rilar singari nasl-nasabga ega bo'lib, itlar pleystotsen bo'risidan kelib chiqishi bo'yicha qishloq itiga yaqinroq bo'lishlari mumkin.[5]

Itlar va bo'rilar o'rtasidagi genetik kelishmovchilik 20-40 ming yil oldin, oldin yoki undan oldin sodir bo'lgan Oxirgi muzlik maksimal darajasi[6][1] (20000–27000 yil oldin). Ushbu vaqt oralig'i xonadonlashtirishning boshlanish vaqtining eng yuqori chegarasini anglatadi, chunki bu kelishmovchilik vaqti, ammo keyinchalik sodir bo'lgan xonadonlashtirish vaqti emas.[6][7] Insoniyat tarixidagi eng muhim o'tishlardan biri bu hayvonlarni xonakilashtirish, bo'rilar va uzoq muddatli assotsiatsiyadan boshlandi ovchi - yig'uvchilar bundan 15000 yildan ko'proq vaqt oldin.[4]

Arxeologik yozuvlar va genetik tahlillar qoldiqlarini ko'rsatadi Bonn-Oberkassel iti 14,200 yil oldin odamlarning yoniga dafn etilgan va birinchi munozarasiz it bo'lib, bahsli qoldiqlar 36000 yil oldin bo'lgan. Itni xonakilashtirish qishloq xo'jaligidan oldin paydo bo'lgan.[1] Faqatgina 11000 yil oldin odamlar yashagan Yaqin Sharq ning yovvoyi populyatsiyasi bilan munosabatlarga kirishgan Aurochs, to'ng'iz, qo'ylar va echkilar.[6] Itni xonakilashtirish qaerda bo'lganligi munozarali bo'lib qolmoqda; ammo, dalillarning adabiy sharhlari eng maqbul takliflar ekanligini aniqladi Markaziy Osiyo, Sharqiy Osiyo va G'arbiy Evropa,[6][7] ammo itning geografik kelib chiqishi noma'lum bo'lib qolmoqda.[8] Oxirigacha Muzlik davri 11 700 yil muqaddam, ajdodlarning beshta nasablari bir-biridan xilma-xil bo'lib, ular ichida topilgan qadimgi it namunalarida ifodalangan Levant (7000 YBP), Kareliya (10.900 YBP), ko'l Baykal (7000 YBP), qadimiy Amerika (4000 YBP) va Yangi Gvineya qo'shiqchisi (Bugungi kun).[8]

Kanid va inson evolyutsiyasi

Olti million yil oldin, oxirigacha Miosen er, erning iqlimi asta-sekin soviydi. Bu sabab bo'ladi muzliklar ning Plyotsen va Pleystotsen, odatda Muzlik davri. Ko'p sohalarda, o'rmonlar va savannalar bilan almashtirildi dashtlar yoki o'tloqlar va faqat ushbu o'zgarishlarga moslashgan jonzot turlari omon qoladi.[9]

Janubda Shimoliy Amerika, kichik o'rmonzor tulkilar kattalashib, yugurishga yaxshi moslashgan va kech Miosen tomonidan birinchi nav Kanis paydo bo'lgan - ajdodlari koyot, bo'rilar va uy iti. Yilda sharqiy Afrika, kattalar o'rtasida bo'linish yuz berdi primatlar. Ba'zilari daraxtlarda qoldi, boshqalari daraxtlardan tushib, tik yurishni o'rgandilar, kattaroq miyalarni rivojlantirdilar va ochiqroq mamlakatda o'zlari yirtqich bo'lib, yirtqichlardan qochishni o'rgandilar. Odamlar va itlarning ajdodlari oxir-oqibat uchrashishadi Evroosiyo.[9]

Odam ovchilar tabiatdan qo'rqmasdan yashamadilar va har qanday potentsial yirtqichlar uchun katta xavf tug'dirishini bilar edilar. Bugun Ju'vasi odamlar Namibiya o'z erlarini sherlarning g'ururlari bilan bo'lishing. Ikkala tur ham hurmat bilan va qo'rquvsiz va dushmanliksiz birga yashab, zamonaviy odamlarning tongiga qaytishi mumkin bo'lgan munosabatlarda. Arslon - bo'ridan ancha kattaroq va juda xavfli yirtqich. Evroosiyoga kirib kelgan va birinchi marta bo'rilar uyushtirgan ilk zamonaviy odamlarga afrikalik ajdodlarining an'anaviy e'tiqodlari tufayli ular orasida yashashga yordam bergan bo'lishi mumkin. Tarixiy davrlarda o'zaro hurmat va hamkorlik itlar Sibir, Sharqiy Osiyo, Shimoliy Amerika va Avstraliyaning mahalliy xalqlarining hikoyalari va an'analarida uchraydi.[10]

Ular bizning hayotimiz nuqtai nazaridan nafaqat o'z hayotlarini, balki merosxo'rlarining evolyutsion taqdirini bir-biri bilan bog'lashni o'z ichiga olgan biologik va madaniy jarayonga jalb qilingan individual hayvonlar va odamlar edi, deb o'ylashimiz kerak, ular hech qachon tasavvur qilolmas edilar.

Bo'rilarning ajralib chiqishi

Uydagi nasabning yovvoyi nasldan ajralib chiqishi uchun taxmin qilingan sana, uylanish jarayoni boshlanganligini ko'rsatishi shart emas, lekin yuqori chegarani ta'minlaydi. Uy otini zamonaviyga olib kelgan nasldan nasldan nasldan naslga kelib chiqqan farq Prjevalskiy oti 45000 atrofida sodir bo'lganligi taxmin qilinmoqda hozirgi yillargacha (YBP), ammo arxeologik yozuv 5,500 YBP ni ko'rsatadi. Turli xillik zamonaviy yovvoyi populyatsiyalar uy sharoitida yashovchilarning to'g'ridan-to'g'ri ajdodi bo'lmasligi yoki iqlim, topografiya yoki boshqa atrof-muhit ta'siridagi o'zgarishlar natijasida yuzaga kelgan ixtilof tufayli bo'lishi mumkin.[7] Yaqinda o'tkazilgan tadqiqotlar shuni ko'rsatadiki, itlar va bo'rilar o'rtasida genetik kelishmovchilik 20,000-40,000 YBP; ammo, bu xonadonlashtirish vaqtining eng yuqori chegarasi, chunki u xonadonlashtirish vaqtini emas, balki kelishmovchilik vaqtini anglatadi.[7][6]

Paleobiogeografiya

Davomida Kech pleystotsen muzligi, ulkan mamont dasht dan cho'zilgan Ispaniya sharqqa qarab Evroosiyo va ustidan Bering quruqlik ko'prigi ichiga Alyaska va Yukon. Kechki pleystotsen bir-biriga bog'liq bo'lgan 16 ° C (29 ° F) gacha bo'lgan mintaqaviy harorat o'zgarishi bilan bir qator qattiq va tez iqlim tebranishlari bilan ajralib turardi. megafaunal yo'q bo'lib ketish. Balandlikda megafaunalning yo'q bo'lib ketishi haqida hech qanday dalil yo'q Oxirgi muzlik maksimal darajasi, ko'payib borayotgan sovuq va muzlik omillar emasligini ko'rsatmoqda. Bir nechta hodisalar bir xil turni tezda boshqa turga almashtirishga sabab bo'ldi tur, yoki bir xil populyatsiyada bir xil populyatsiya, keng maydon bo'ylab. Ba'zi turlar yo'q bo'lib ketishi bilan, ularga bog'liq bo'lgan yirtqichlar ham yo'q qilindi (bir-birini yo'q qilish ).[12]

Belgilangan asosiy xususiyatlarga ega bo'ri bosh suyagi diagrammasi.

Itlarning kelib chiqishi paleoda yotadibiogeografiya Pleistosen davrida bo'ri populyatsiyasining soni. Eng qadimgi qoldiqlari Canis lupus bir vaqtlar sharqiy bo'lgan joyda topilgan Beringiya da Old Crow, Yukon, Kanada va Cripple Creek Sump-da, Feyrbanks, Alyaska. Yoshi kelishilmagan, ammo 1 million YBPga teng bo'lishi mumkin. So'nggi pleystotsen tomonidan kulrang bo'rilar orasida sezilarli morfologik xilma-xillik mavjud edi. Ular zamonaviy kulrang bo'rilarga qaraganda ancha kranio-dentally kuchli, ko'pincha qisqargan minbar, ning aniq rivojlanishi vaqtinchalik mushak va mustahkam premolar. Ushbu xususiyatlar ovlash va tozalash bilan bog'liq tana go'shti va suyaklarni qayta ishlashga ixtisoslashgan moslamalar bo'lganligi taklif qilinmoqda Pleistotsen megafauna. Zamonaviy bo'rilar bilan taqqoslaganda, ba'zi pleystotsen bo'rilarida tishlarning singanligi ko'paygan, bu yo'q bo'lib ketganga o'xshaydi dahshatli bo'ri. Bu shuni ko'rsatadiki, ular tez-tez qayta ishlangan tana go'shti yoki ular boshqa yirtqich hayvonlar bilan raqobatlashib, o'ljalarini tezda iste'mol qilishlari kerak edi. Ushbu bo'rilarda uchraydigan tish sinishlarining chastotasi va joylashuvi zamonaviy bilan taqqoslaganda dog'li sirg'a bu bo'rilar odatdagidek suyak krakerlari bo'lganligini ko'rsatadi.[1]

Zamonaviy kul bo'ri bilan munosabatlar

Kul bo'rilar butun dunyo bo'ylab azob chekishdi aholining tiqilishi (muzlatish) oxirgi muzlik maksimal davrida taxminan 25000 YBP. Buning ortidan a-dan kengayib borayotgan zamonaviy bo'rilarning yagona populyatsiyasi kuzatildi Beringiya panohi Evroosiyo va Shimoliy Amerika bo'ylab qolgan Pleistosen bo'ri populyatsiyasining o'rnini egallagan holda, bo'rining oldingi populyatsiyasini qayta tiklash.[13][14][15] Ushbu manba populyatsiyasi, ehtimol, itlarni tug'dirmagan, balki itlar bilan aralashgan, bu ularga immunitet bilan bog'liq bo'lgan palto rang genlarini olish imkoniyatini bergan va itlarga yuqori balandlikdagi muhitga (masalan, Tibet) moslashishga imkon beradigan genlar bergan. Bu shuni ko'rsatadiki, Evropa va Sharqiy Osiyo itlarining genetik xilma-xilligi bo'rilarning turli xil populyatsiyalari bilan aralashishga asoslangan bo'lishi mumkin.[15]

Darz ketishdan oldin mavjud bo'lgan qadimiy bo'rilar haqida ozgina genetik ma'lumot mavjud. Biroq, tadqiqotlar shuni ko'rsatadiki, bu qadimgi populyatsiyalardan biri yoki bir nechtasi zamonaviy bo'rilarga qaraganda itlar uchun to'g'ridan-to'g'ri ajdodlardir va ular Evroosiyoni bosib olgan birinchi odamlar tomonidan uy sharoitiga moyilroq bo'lgan.[15]

An tepalik yirtqichi tepada o'tiradi trofik daraja oziq-ovqat zanjiri, a mezopredator oziq-ovqat zanjiridan pastga o'tiradi va kichikroq hayvonlarga bog'liq. Pleistosen davrining oxiriga kelib, bugungi kunda tepalikdagi yirtqich hayvonlarning aksariyati mezopredatorlar bo'lib, ular orasida bo'ri ham bor edi. So'nggi pleystotsen davri yopilishi bilan bog'liq ekologik qo'zg'alish davrida bo'ri populyatsiyasining bir turi ko'tarilib, bugungi cho'qqini yirtqichga aylandi, boshqasi esa odam bilan qo'shilib, tepalik iste'molchisi bo'ldi.[16]

Bugun biz bilgan kulrang bo'ri yuz ming yillar davomida mavjud bo'lganligi va itlar ulardan kelib chiqqanligi shunchalik uzoq qarash edi. Ularning yo'qligiga juda hayron qoldik.

— Robert K. Ueyn[17]

Genetik farqlanish vaqti

Genetik tadqiqotlar shuni ko'rsatadiki kulrang bo'ri itning eng yaqin tirik qarindoshi, boshqa hech qanday dalil yo'q it hissa qo'shgan turlar. Orqali itning nasl-nasabini qayta tiklashga urinish filogenetik tahlil ning DNK ketma-ketliklari zamonaviy itlar va bo'rilar bir necha sabablarga ko'ra qarama-qarshi natijalar berdi. Birinchidan, tadqiqotlar shuni ko'rsatadiki, yo'q bo'lib ketgan Kech pleystotsen bo'ri itga eng yaqin umumiy ajdod, zamonaviy bo'rilar itning bevosita ajdodi emas.[3] Ikkinchidan, it va zamonaviy bo'rilar o'rtasidagi genetik kelishmovchilik qisqa vaqt ichida sodir bo'lgan, shuning uchun divergentsiya vaqtini sanash qiyin (shunday deb yuritiladi) tugallanmagan nasllarni saralash ). Bu uy sharoitidan buyon itlar va bo'rilar o'rtasida kelib chiqqan o'zaro naslchilik bilan murakkablashadi (domestikatsiyadan keyingi davr deb yuritiladi) gen oqimi ). Va nihoyat, uy sharoitidan beri itlarning atigi o'n minglab avlodlari bo'lgan, shuning uchun ularning soni mutatsiyalar it va bo'ri o'rtasida kam sonli narsa bor va bu xonadonlashtirish vaqtini hozirgi kunga qadar qiyinlashtiradi.[3]

2013 yilda, butun genom ketma-ketligi zamonaviy itlar va bo'rilarning ajralib chiqish vaqti 32000 YBPni tashkil etdi. 2014 yilda yana bir tadqiqotda zamonaviy bo'rilar asosida 11000–16000 YBP ko'rsatilgan mutatsiya darajasi. Birinchi qoralama genom ketma-ketligi Pleistosen bo'ri 2015 yilda nashr etilgan. Ushbu bo'ri Taymir yarim oroli zamonaviy bo'rilar va itlarning ajdodlaridan ajralib chiqqan populyatsiyaga tegishli edi. Radiokarbon bilan tanishish uning yoshi 35000 YBP ekanligini bildiradi va bu yoshdan keyin bo'rilarning mutatsion darajasini kalibrlash uchun ishlatilishi mumkin, bu esa itlar va bo'rilar o'rtasidagi genetik kelishmovchilik oxirgi muzlik maksimal darajasidan oldin, ya'ni 27000 dan 40.000 YBP gacha bo'lganligini ko'rsatmoqda. Pleistosen bo'rining mutatsion darajasi dastlab zamonaviy bo'rining mutatsion tezligidan foydalangan 2014 yilgi avvalgi tadqiqot vaqtiga tatbiq etilganda, ushbu tadqiqot natijasi 27000–40.000 YBP ni tashkil etdi.[1] 2017 yilda bir tadqiqot taqqoslandi yadroviy genom (hujayra yadrosidan) uchta qadimiy it namunalari va 36900 dan 41.500 YBP gacha bo'lgan bitta it-bo'ri divergensiyasining dalillarini topdi.[18]

Genetik xilma-xillikdan oldin itga ajdodlari bo'lgan bo'rilar soni boshqa barcha bo'rilar populyatsiyasidan ko'p bo'lgan va divergentsiyadan keyin itlar populyatsiyasi kamayib ketgan.[19][20]

Genetik ajralish joyi

Zamonaviy DNK asosida

Sharqiy Osiyo

Ko'plab genetik tadqiqotlar shuni aniqladiki, itlar Janubi-sharqiy Osiyo va Janubiy Xitoy kattaroq ko'rsatish genetik xilma-xillik boshqa mintaqalardan kelgan itlarga qaraganda, bu ularning kelib chiqishi joy edi.[21][22][23][24][25][26] Xuddi shunday tadqiqot natijasida zotli itlarga qaraganda afrikalik qishloq itlarida ko'proq genetik xilma-xillik aniqlandi.[27] 2015 yilda, a butun genomni tahlil qilish Xitoy va uning chegarasidagi mahalliy itlarning Vetnam Afrikadan kelgan mahalliy itlar va boshqa mintaqalardagi it zotlari bilan taqqoslandi. Sharqiy Osiyo itlarining yuqori genetik xilma-xilligiga asoslanib, tadqiqot shuni ko'rsatdiki, itlar janubiy Sharqiy Osiyoda paydo bo'lgan, so'ngra ota-bobolarimiz itlarining bir qismi 15000 YBP Yaqin Sharq, Afrika va Evropaga ko'chib, so'ng Evropaga 10000 ga etgan. YBP. Keyinchalik, ushbu nasllardan biri Shimoliy Xitoyga ko'chib o'tdi va Amerikaga ko'chishdan oldin endemik Osiyo nasllari bilan qo'shildi.[26]

Sharqiy Osiyo kelib chiqishi shubha ostiga olingan, chunki Evropada 15000 YBP atrofida it qoldiqlari topilgan, ammo Rossiyaning uzoq sharqida atigi 12000 YBP.[28] Bunga javoban Sharqiy Osiyoda olib borilgan arxeologik tadqiqotlar Evropadagi tadqiqotlardan orqada qolmoqda va Janubiy Sharqiy Osiyodagi atrof-muhit sharoiti qoldiqlarning saqlanishiga yordam bermaydi. Garchi itning ibtidoiy shakllari ilgari Evropada mavjud bo'lgan bo'lsa-da, genetik dalillar shuni ko'rsatadiki, keyinchalik ular Sharqiy Osiyodan janubdan ko'chib kelgan itlar bilan almashtirilgan.[26] 2017 yilda, a adabiyot manbalarini haqida umumiy ma'lumot; Adabiyot sharhi ushbu Sharqiy Osiyo tadqiqotlari faqat sharqiy osiyolik mahalliy itlardan namunalar olib, ularning genetik xilma-xilligi bilan boshqa geografik mintaqalardagi zot itlariga taqqoslanganligini aniqladi. Ma'lumki, genetik to'siqlar zotlarning shakllanishi bilan bog'liq genetik xilma-xillikni keskin kamaytiradi, bu mos taqqoslash emas edi.[3]

Yaqin Sharq va Evropa

2010 yilda, o'rganish yordamida bitta nukleotid polimorfizmlari itlar O'rta Sharqda itlar va O'rta Sharqdagi kulrang bo'rilar o'rtasida haplotiplarning ko'payishi tufayli paydo bo'lganligini ko'rsatib, bu Sharqiy bo'rilar Sharqiy Osiyo bo'rilari emas, balki uy itlari manbai ekanligini ko'rsatdi. Boshqa tomondan, ba'zi mintaqaviy zotlar va mintaqaviy bo'rilar o'rtasida sezilarli aralash mavjud bo'lishi mumkin.[29] 2011 yilda o'tkazilgan tadqiqotda it-bo'ri bo'lganligi aniqlandi duragaylash va mustaqil uy sharoitida emas,[30][23] Janubiy Sharqiy Osiyoning itlarning kelib chiqishi genetik xilma-xillikning yuqori darajasiga asoslangan bo'lishi mumkin.[23][24] 2012 yilda bir tadqiqot shuni ko'rsatdiki yadroviy genom Yaqin Sharq va Evropada paydo bo'lgan bo'rilardan olingan itlarning.[31]

Markaziy Osiyo

2015 yilda DNK tadqiqotlari ko'rib chiqildi autosomal, onalik mitoxondrial DNK (mDNA) va otalik Y xromosoma (yDNA) 38 mamlakatdan kelgan zotli va qishloq itlarining xilma-xilligi. Ba'zi itlar populyatsiyasi Neotropiklar va Tinch okeanining janubiy qismi deyarli butunlay Evropa itlaridan olingan va boshqa mintaqalarda mahalliy va evropalik itlarning aniq aralashmasi mavjud. Vetnam, Hindiston va Misrning mahalliy itlar populyatsiyasi Evropa aralashmasining minimal dalillarini namoyish etadi va juda xilma-xil va past bog'lanish nomutanosibligi a bilan mos keladi Markaziy Osiyo uy sharoitidan kelib chiqish, undan keyin Sharqiy Osiyoda aholi sonining kengayishi. Tadqiqotda itlarning boshqa joylarda uyg'otilganligi va keyinchalik Markaziy Osiyoga kirib kelishi va turli xil bo'lishi ehtimoli yo'q emas edi. Yo'qolgan itlarni o'rganish, keyinchalik nobud bo'lgan yoki zamonaviy populyatsiyalar tomonidan bosib olingan oldingi uy sharoitidagi hodisalarni istisno eta olmaydi.[32] 2016 yilda ushbu topilma sharqiy Osiyo mahalliy itlarining bog'lanish nomutanosibligi haqidagi ma'lumotlarni o'z ichiga olgan butun genom tadqiqotida shubha ostiga qo'yildi va bular Sharqiy Osiyo kelib chiqishini ko'rsatadigan markaziy Osiyo itlariga qaraganda pastroq darajani ko'rsatdi.[33] Keyinchalik, genom ketma-ketliklarida qo'llaniladigan past qamrov tufayli kelib chiqadigan salbiy tarafkashlik tufayli ushbu baho shubha ostiga qo'yildi.[34] 2017 yilda adabiyotni o'rganish natijasida nasllarning shakllanishi bilan bog'liq bo'lgan genetik to'siqlar bog'lanishning nomutanosibligini oshirishi ma'lum bo'lganligi sababli, toza nasllarni qishloq itlari bilan taqqoslash maqsadga muvofiq emasligini aniqladi.[3]

Qadimgi DNK asosida

So'nggi yigirma yil ichida olib borilgan genetik tadqiqotlarning aksariyati zamonaviy it zotlari va bo'ri mavjud bo'lgan populyatsiyalarga asoslangan bo'lib, ularning topilmalari bir qator taxminlarga bog'liq. Ushbu tadqiqotlar, mavjud bo'ri itning ajdodi edi, deb o'ylamagan genetik aralashma bo'rilar va itlar o'rtasida ham, ta'sir ham tugallanmagan nasllarni saralash. Ushbu genomik tadqiqotlar Janubi-Sharqiy Osiyoda, Sharqiy Osiyoda, Markaziy Osiyoda, Yaqin Sharqda yoki Evropada itlarning kelib chiqishini taxmin qildi. Yaqinda, maydon Paleogenomika eng yangi molekulyar texnologiyalarni qo'llaydi fotoalbom hanuzgacha foydali bo'lgan qoldiqlar qadimiy DNK.[1]

Markaziy Osiyo
3300 yoshga oid "Oltoy iti" ning bosh suyagi.

2013 yilda bir tadqiqot yaxshi saqlanib qolgan 33000 yillik bosh suyagini ko'rib chiqdi va tark etdi mandible Razboinichya g'oridan qazib olingan itga o'xshash kanid Oltoy tog'lari janubiy Sibirning (O'rta Osiyo). MDNK tahlili uni bo'rilarga qaraganda itlar bilan ko'proq bog'liqligini aniqladi.[35] Keyinchalik 2013 yilda yana bir tadqiqot shuni ko'rsatdiki, kanidni itlar va bo'rilar orasiga tushgani uchun tasniflash mumkin emas.[36] 2017 yilda evolyutsion biologlar itlarning divergensiyasi bo'yicha mavjud bo'lgan barcha dalillarni ko'rib chiqdilar va Oltoy tog'laridagi namunalarni hozirgi kunda yo'q bo'lib ketgan nasabdagi itlarning itlari ekanligini qo'llab-quvvatladilar va bu hozir ham yo'q bo'lib ketgan kichik bo'rilar populyatsiyasidan olingan. .[3]

Yana qarang: Oltoy iti
Evropa
14,500 yillik a .ning yuqori o'ng jag'i Pleystotsen bo'ri topilgan Kesslerox g'ori yaqin Tayngen kantonida Sheffhausen, Shveytsariya.

2013 yilda bir tadqiqot to'liq va qisman ketma-ketlik bilan ketma-ketlik qildi mitoxondriyal genomlar Qadimgi va yangi dunyodagi 18 ta fotoalbom kanidlarning xurmolari 1000 dan 36000 YBP gacha bo'lgan va ularni zamonaviy bo'rilar va itlarning mitoxondriyal genomlari bilan taqqoslaganlar. Filogenetik tahlil shuni ko'rsatdiki, zamonaviy it mDNA haplotiplar to'rtga qaror qiling monofiletik qoplamalar sifatida tadqiqotchilar tomonidan tayinlangan A-D pardalari.[36][37][38] A sinfiga zamonaviy itlarning 64 foizi tanlab olindi va ular qayta tiklandi opa-singillar guruhi 1000 dan 8500 YBPgacha bo'lgan uchta kolumbiyalik yangi dunyo itlarini o'z ichiga olgan, yangi kolumbiyalik yangi dunyo itlarining ajdodlari zamonaviy itlar bilan bo'lishishi va ular ehtimol yangi dunyoga birinchi odamlar bilan kelganligi haqidagi gipotezani qo'llab-quvvatlaydi. Birgalikda A klada va Kolumbiyadan oldingi toshbo'ron qilingan itlar 14,500 YBP bo'rilar ketma-ketligiga singil guruh bo'lgan. Kesslerox g'ori yaqin Tayngen kantonida Sheffhausen, Shveytsariya, eng so'nggi umumiy ajdodimiz 32,100 YBP deb taxmin qilingan.[36] Clade B itlarning 22% ketma-ketligini o'z ichiga olgan va Shvetsiya va Ukrainadan kelgan zamonaviy bo'rilar bilan bog'liq bo'lib, ularning umumiy ajdodi 9200 YBP ga teng. Biroq, bu munosabatlar mitokondriyal genomni ifodalashi mumkin introressiya bo'rilardan, chunki itlar bu vaqtgacha xonakilashtirilgan. Clade C tarkibiga 12 foiz itlar kiritilgan va ular qadimgi itlarga singil bo'lgan Bonn-Oberkassel g'or (14,700 YBP) va yaqinidagi Kartsteyn g'ori (12500 YBP) Mexernich Germaniyada, umumiy ajdodlari 16000–24000 YBP ga baholangan. Clade D 2 dan ketma-ketliklarni o'z ichiga olgan Skandinaviya zotlar (Jamsund, Norvegiyalik Elxund ) va Kesserlox g'oridan yana 14,500 YBP bo'rilar ketma-ketligiga singil guruh bo'lib, umumiy ajdodlari 18,300 YBP deb taxmin qilingan. Uning filiali filogenetik ravishda "Oltoy iti" bilan bir xil ketma-ketlikda ildiz otgan (to'g'ridan-to'g'ri ajdod emas). Ushbu tadqiqot ma'lumotlari Evropada topilgan itlarning 78,5% namunaviy itlarning 78% genetik munosabatlariga asoslanib, 18,800–32,100 YBP deb baholangan Evropadan kelib chiqqanligini ko'rsatdi.[39][36] Ma'lumotlar itlarni xonakilashtirish qishloq xo'jaligining paydo bo'lishidan oldin bo'lgan degan farazni tasdiqlaydi[37] va ovchilarni o'ldirish paytida oxirgi muzlik maksimaliga yaqin boshlangan megafauna.[36][40]

Tadqiqot shuni ko'rsatdiki, uchta qadimiy Belgiya kanidlari (36000 YBP) "Goyet iti" sifatida kataloglangan Kanis turlari, Belgiya bilan birga 30,000 YBP va 26,000 YBP sifatida kataloglangan Canis lupus) eng xilma-xil guruh bo'lgan qadimiy qoplama hosil qildi. Tadqiqotda "Goyet iti" va "Oltoy iti" ning bosh suyaklari itga o'xshash xususiyatlarga ega ekanligi aniqlandi va bu abort qilingan xonakilashtirish epizodini anglatishi mumkin edi. Agar shunday bo'lsa, dastlab itlar uchun qadimgi uyga keltirish tadbirlari bir nechta bo'lgan bo'lishi mumkin[36] uy cho'chqalari uchun bo'lgani kabi.[41]

Bitta nazariya shundan iboratki, xonadonlar besh sovuqdan birida sodir bo'lgan Geynrix voqealari bu odamlar G'arbiy Evropaga 37000, 29000, 23000, 16.500 va 12.000 YBP kelgandan keyin sodir bo'lgan. Nazariya shuni ko'rsatadiki, ushbu hodisalardan biri paytida haddan tashqari sovuq odamlarning yashash joylarini o'zgartirishi, madaniyati buzilishi va e'tiqodlarining o'zgarishi bilan moslashishi yoki innovatsion yondashuvlarni qabul qilishi kerak edi. Katta bo'ri / itni asrab olish ushbu dushmanlik muhitiga moslashish edi.[42]

Evropaning taklifini tanqid qilish shundan iboratki, Sharqiy Osiyodagi itlar ko'proq genetik xilma-xillikni namoyish etadi. Shu bilan birga, genetik xilma-xillikning keskin farqlariga qadimgi va yaqin qarindoshlararo tarix ta'sir qilishi mumkin.[26] Qarama-qarshi sharh shuni ko'rsatadiki, zamonaviy Evropa zotlari faqat 19-asrda paydo bo'lgan va butun dunyo bo'ylab itlar populyatsiyasi diversifikatsiya va gomogenizatsiya epizodlarini boshdan kechirgan va har bir turda zamonaviy zotlardan olingan genetik ma'lumotlarning kuchini kamaytirishga yordam beradi. dastlabki tarix.[28]

2019 yilda Italiyaning shimoliy qismidan 19 kech pleystotsen-golotsen bo'ri namunalarini mDNA bilan o'rganish shuni ko'rsatdiki, ular bitta namunadan tashqari mDNA haplogroup 2 ga tushgan. Bitta namuna Kava Filo yaqinidagi arxeologik maydon San-Lazzaro di Savena, Boloniya uy itlari panjasi A ichiga tushib qolgan haplotip - bu 24 700 YBPga teng bo'lgan radio-uglerod edi.[43]

2020 yil sentyabr oyida ikkita g'orda it qoldiqlari topildi, Paglicci g'ori va Grotta Romanelli [u ], yilda Apuliya, janubiy Italiya. Ular 14000 YBPga tegishli edi va bu eng qadimgi it qoldiqlari O'rta er dengizi havzasi. Cho'kma 20000 YBP sanasida yozilgan qatlamdan bitta namuna olindi, bu avvalroq vaqt o'tkazish imkoniyatini ko'rsatdi. Namunalar genetik jihatdan 14000 YBP bilan bog'liq edi Bonn-Oberkassel iti Germaniyadan va g'arbiy va markaziy Evropadan kelgan boshqa itlar, ularning hammasi it itlarining S haplotipi tarkibiga kiradi, bu ularning hammasi bir ajdoddan kelib chiqqanligini ko'rsatmoqda. Genetik vaqtni qo'llagan holda, ushbu kladejning eng so'nggi umumiy ajdodi 28,500 YBPga to'g'ri keladi.[44]

Arktika shimoliy-sharqiy Sibir
Majburiy Canis c.f. variabilis Sibirning shimoliy-sharqidan 360.000-400.000 yoshga oid.[45]

2015 yilda tadqiqot natijasida topilgan qadimiy kanid namunalaridan mDNK tiklandi Joxov oroli va Yana daryosi, Arktik shimoliy-sharqiy Sibir (bir vaqtlar g'arbiy Beringiyaning bir qismi bo'lgan). Ushbu namunalar tarkibiga quyidagilar kiritilgan mandible 360,000-400,000 YBP dan Canis c.f. variabilis (qayerda c.f. a Lotin noaniq ma'noni anglatuvchi atama). Ushbu kanidlarning filogenetik tahlillari natijasida to'qqiz mDNK aniqlandi haplotiplar ilgari aniqlanmagan. The Canis c.f. variabilis Rossiya va Osiyo bo'ylab boshqa bo'ri namunalari bilan to'plangan namunalar. Bir 8750 YBP namunasining mDNA haplotiplari va taxminan 28000 YBP namunalari geografik jihatdan keng tarqalgan zamonaviy itlarning namunalari bilan mos tushdi. Bitta 47000 YBP kanidasi bo'rilardan ajralib turardi, ammo ularning soni ozgina edi mutatsiyalar zamonaviy itlarda uchraydigan haplotiplardan uzoqroq. Mualliflar zamonaviy itning tuzilishi degan xulosaga kelishdi genofond qadimgi Sibir bo'rilaridan va ehtimol undan yordam bergan Canis c.f. variabilis.[45][46]

Ikki kelib chiqishi

Qadimgi itlar genomlarini tahlil qilish bilan birga itlarning arxeologik naqshlari shuni ko'rsatadiki, zamonaviy itlar populyatsiyasi Sharqiy va G'arbiy Evroosiyoda mustaqil bo'ri populyatsiyasidan kelib chiqishi mumkin; ammo, bu taklif beri so'roq qilingan.[4]

Itlar qadimiy va zamonaviy nasllarni namoyish etadi. Qadimgi nasablar eng Osiyoda, lekin Evropada kam uchraydi, chunki Viktoriya davri qadimgi nasablardan ozgina foydalanilgan zamonaviy it zotlarini rivojlantirish.[29][32][19] Barcha itlar populyatsiyasi (zot, qishloq va yirtqich) ba'zi bir dalillarni ko'rsatadi genetik aralashma zamonaviy va qadimiy itlar o'rtasida. Bir vaqtlar Evropani va Yangi Dunyoni egallab olgan ba'zi qadimgi itlar populyatsiyasi endi mavjud emas.[36][2][19][47] Bu shuni anglatadiki, ba'zi qadimgi itlar populyatsiyasi butunlay almashtirildi va boshqalari uzoq vaqt davomida aralashtirildi.[48] So'nggi 15000 yil ichida evropalik itlar populyatsiyasi katta aylanishga duch keldi, bu esa dastlabki evropalik itlarning genomik imzosini yo'q qildi,[32][49] qo'shilish tufayli zamonaviy zotlarning genetik merosi xiralashgan,[28] va yo'q bo'lib ketgan yoki zamonaviy itlar populyatsiyasi bilan almashtirilgan o'tmishdagi uy sharoitidagi hodisalar ehtimoli mavjud edi.[32]

2016 yilda mDNA va butun genom ketma-ketliklari 14000–3000 YBP gacha bo'lgan 59 qadimiy Evropa it namunalarining mDNA ketma-ketliklari va butun dunyo bo'ylab zamonaviy itlarning paneli yadroviy genom da topilgan it namunasining ketma-ketligi Oxirgi neolit qabrdan o'tish Newgrange, Irlandiya va radiokarbon eskirgan 4.800 YBP da. Newgrange itining genetik tahlili shuni ko'rsatdiki, u erkak, zamonaviy paltoning uzunligi va rangi bilan bog'liq bo'lgan genetik variantlarga ega emas, kraxmalni zamonaviy itlar singari samarali emas, balki bo'rilarga qaraganda samaraliroq va populyatsiyadan kelib chiqqanligini ko'rsatgan. bugungi kunda boshqa itlarda ham bo'rilarda ham topilmaydigan bo'rilar. "Proto-it" ning taksonomik tasnifi sifatida Paleolit ​​itlari chunki itlar yoki bo'rilar bo'lish munozarali bo'lib qolmoqda, ular tadqiqotdan chetlashtirildi. The filogenetik daraxt mDNA sekanslaridan hosil bo'lgan va ular o'rtasida chuqur bo'linishni topdi Sarloos bo'ri va boshqa barcha itlar, bu naslning yaqinda olinganligini ko'rsatmoqda Nemis cho'poni va tutqun kulrang bo'rilar. Keyingi eng katta bo'linish Sharqiy Osiyo itlari va g'arbiy Evroosiyo (Evropa va Yaqin Sharq) itlari o'rtasida bo'lib, ular 14000 dan 6400 YBPgacha bo'lgan, Nyugrange itlari g'arbiy Evroosiyo itlari bilan klasterlashgan.[41]

Newgrange va qadimiy Evropa itlarining mDNA ketma-ketliklari asosan mDNA haplogrouplariga berilishi mumkin C va D ammo zamonaviy Evropa itlarining ketma-ketliklari asosan mDNA haplogrouplari A va B ga biriktirilishi mumkin, bu o'tmishda itlarning Evropadan boshqa joydan aylanishini ko'rsatadi. Ushbu ajralish Newgrange itidan kattaroq bo'lganligi sababli, bu almashtirish qisman qilingan deb taxmin qiladi. Tahlil shuni ko'rsatdiki, aksariyat zamonaviy Evropa itlari a aholining tiqilishi (pasayish), bu sayohat ko'rsatkichi bo'lishi mumkin. Arxeologik yozuvlarga ko'ra, Evrosiyoning g'arbiy qismida 15000 YBP, Sharqiy Evrosiyoda 120000 YBP, lekin 8000 YBP dan katta bo'lmagan it qoldiqlari ko'rsatilgan. Markaziy Osiyo. Tadqiqot shuni ko'rsatadiki, itlar sharqiy va g'arbiy Evrosiyoda ikkita genetik jihatdan ajralib turadigan va hozir yo'q bo'lib ketgan bo'ri populyatsiyasidan alohida xonakilashtirilgan bo'lishi mumkin. Keyin Sharqiy Evroosiyo itlari g'arbiy Evropaga ko'chib o'tishga kirishdi 14,000 va 6,400 YBP orasida Evropaning itlarini qisman almashtirdilar.[19][50] Yaqinda G'arbiy Evrosiyoda va Sharqiy Evrosiyoda uy sharoitida cho'chqa uchun ikkita uy sharoitlari topildi.[19]

Gipoteza shundan iboratki, genetik jihatdan bir-biridan farq qiladigan va ehtimol yo'q bo'lib ketgan ikkita bo'ri populyatsiyasi sharqiy va g'arbiy Evrosiyoda paleolitik itlarni ishlab chiqarish uchun mustaqil ravishda xonakilashtirilgan.[19] Sharqiy Evroosiyo itlari odamlar bilan bir qatorda g'arbiy tomon tarqalib, g'arbiy Evropaga 6,400–14000 YBPgacha etib bordi va u erda g'arbiy paleolitik itlarni qisman almashtirdilar.[39][19][1] Bitta xonadonlashtirish tasodif tufayli deb o'ylashadi; ammo, dunyoning turli tomonlarida er-xotin uy sharoitida bo'lish tasodifiy tarzda amalga oshishi ehtimoldan yiroq emas va bu tashqi omillar - ekologik omil - bo'rilarni yashash uchun odamlar bilan birgalikda ishlashga majbur qilgan bo'lishi mumkin. Ehtimol, bo'rilar odamlarda mavjud bo'lgan resurslardan foydalangan bo'lishi mumkin yoki odamlar ilgari yashamagan hududida bo'rilar bilan tanishgan bo'lishi mumkin.[51]

Ikki kelib chiqishi haqida bahslashdi

2017 yilda Germaniya va Irlandiyadagi uchta qadimiy itlar namunalarining yadro genomlari ketma-ketligini 5000 dan ortiq it va bo'rilar ketma-ketligi bilan taqqosladilar. Ushbu neolit ​​davridagi itlarning namunalariga it namunasi kiritilgan Ilk neolit sayt Herxxaym, Germaniya 7000 YBP sana, biri Oxirgi neolit Kirschbaum (Cherry Tree) g'orining yaqinidagi joy Forxgeym, Germaniya 4.700 YBP, Irlandiyaning Newgrange'dan kelgan it 4.800 YBP. Tadqiqot shuni ko'rsatdiki, zamonaviy evropalik itlar o'zlarining neolit ​​davridagi ajdodlaridan kelib chiqqan holda, aholi sonining o'zgarishi to'g'risida dalil yo'q. 36900 dan 41.500 YBP gacha bo'lgan bitta it-bo'ri divergensiyasi, undan keyin Janubi-Sharqiy Osiyo va G'arbiy Evroosiyo itlari o'rtasida 17.500-223.900 YBP farqi bo'lganligi haqida dalillar mavjud edi va bu 20.000 dan 40.000 YBPgacha bo'lgan bitta itni domestikatsiya qilish hodisasini ko'rsatadi. 3 ta it Janubi-Sharqiy Osiyo itlarida topilishi mumkin bo'lgan ajdodlarni ko'rsatdi. Bundan tashqari, Cherry Tree g'or iti Yaqin Sharq, Hindiston va Markaziy Osiyoda topilishi mumkin bo'lgan ajdodlarini ko'rsatdi.[18] Tadqiqotda er-xotin uy sharoitidagi voqea qo'llab-quvvatlanmadi va zamonaviy Evropa va Janubi-Sharqiy Osiyo itlarining ajdodlari o'rtasida aralashma aniqlandi.[18][1]

2018 yilda mDNA ketma-ketliklarini o'rganish shuni ko'rsatdiki, Evropaning neolitgacha bo'lgan itlari hammasi haplogroup guruhiga tushishgan. Janubi-sharqiy Evropadan fermerlar bilan bog'liq bo'lgan neolit ​​va post-neolit ​​davridagi itlar Gaplogroupga tushishgan. G'arbiy va Shimoliy Evropada D гапlogrupu mahalliy itlar populyatsiyasida suyultiriladi. Bu shuni anglatadiki, ha haplogrupu Evropaga 9000 YBP dan kelgan Yaqin Sharq cho'chqalar, sigirlar, qo'ylar va echkilar bilan birga.[52] Keyinchalik 2018 yilda yana bir tadqiqot y-xromosoma Herxheim, Kirschbaum va Newgrange itlarining qadimiy qoldiqlarining boshqa itlar qatori erkak urg'usi. Tadqiqotda oltita asosiy it yDNA haplogrouplari aniqlandi, shulardan ikkitasi zamonaviy itlarning aksariyatini o'z ichiga oladi. Newgrange iti ushbu haplogrouplarning eng ko'p tarqalganiga tushib qoldi. Ikki qadimiy nemis itlari Yaqin Sharq va Osiyodan kelgan itlar orasida keng tarqalgan haplogroupga tushishdi, Kirschbaum iti esa hozirgacha mavjud bo'lgan erkaklar nasabiga ega. Hind bo'ri. Tadqiqot natijalariga ko'ra, qadimgi Evropada kamida 2 xil erkak haplogrouplari bo'lgan va itlarning urug 'nasli eng yaqin umumiy ajdodlaridan ajralib, bo'ri bo'ri bilan 68000 dan 151000 YBP gacha bo'lgan davrda ajralib chiqqan.[53]

Morfologik divergensiya

Itlar qachon va qaerda birinchi marta xonakilashtirilganligi haqidagi savollar genetiklar va arxeologlarga o'nlab yillar davomida soliq solgan.[2] Eng qadimgi itlarni aniqlash qiyin, chunki bu kalit morfologik tomonidan ishlatiladigan belgilar zooarxeologlar uy itlarini yovvoyi bo'ri ajdodlaridan ajratish (tishlarning kattaligi va holati, tish patologiyalari, kraniyal va postkranial elementlar) xonakilashtirish jarayonining dastlabki bosqichlarida hali aniqlanmagan. Qadimgi bo'ri populyatsiyalarida mavjud bo'lishi mumkin bo'lgan ushbu belgilar orasidagi tabiiy o'zgarish doirasi va bu xususiyatlarning itlarda paydo bo'lishi vaqti noma'lum.[28]

Qoldiqlar, evolyutsion tarixga ishora qiladi, ular morfologik jihatdan itga o'xshash bo'rilarni ham, bo'riga o'xshash itlarni ham o'z ichiga olishi mumkin. Agar eng qadimgi itlar odamlarni tashlab qo'ygan jasadlarini qirib tashlagan bo'lsa, unda erta selektsiya bo'riga o'xshash morfologiyani afzal ko'rgan bo'lishi mumkin. Ehtimol, odamlar ko'proq harakatsiz bo'lib qolishgan va itlar ular bilan chambarchas bog'liq bo'lganida, kichikroq, fenotipi jihatidan ajralib turadigan itlarni tanlash mumkin edi, hatto itlar tanasining kichrayishi qishloq xo'jaligidan ilgari ham bo'lishi mumkin edi.[3]

Insoniyat tarixidagi eng muhim o'tish davrlaridan biri bu 15000 yildan ko'proq vaqt oldin bo'rilar va ovchi-teribchilar o'rtasidagi uzoq muddatli birlashuvdan boshlangan hayvonlarni uyga boqish edi.[4] Faqatgina 11000 YBP ichida odamlar yashamadilar Yaqin Sharq yovvoyi hayvonlar, cho'chqalar, qo'ylar va echkilar bilan munosabatlar o'rnatgan. Keyinchalik uylashtirish jarayoni rivojlana boshladi. Kul bo'ri katta ehtimol bilan ta'qib qilgan komensal yo'l uylanishga. Bo'rilar qachon, qaerda va necha marta uyga tushirilgan bo'lishi mumkinligi haqida munozaralar davom etmoqda, chunki ozgina qadimiy namunalar topilgan va arxeologiya ham, genetika ham qarama-qarshi dalillarni keltirmoqda. Eng ko'p qabul qilingan, eng qadimgi it 15000 YBPga tegishli Bonn-Oberkassel iti. Avvalgi 30,000 YBPga tegishli bo'lgan qoldiqlar tasvirlangan Paleolit ​​itlari; ammo, ularning it yoki bo'ri kabi maqomi munozarali bo'lib qolmoqda.[6]

Erta it namunalari

Yaqinda kashf etilgan bir qancha namunalar mavjud, ular paleolit ​​davridagi itlar deb taklif qilingan; ammo, ularning taksonomiyasi muhokama qilinadi. Paw-printlar Chauvet g'ori Frantsiyada 26,000 YBP sanasi turli xil tadqiqotchilar tomonidan it yoki bo'ri kabi bo'lishi mumkin.[1]

Paleolit ​​davridagi itlarning namunalari (taksonomiya bo'yicha munozara)[1]
Yillar BPManzil
40,000–35,000Hohle Fels, Shelklingen, Germaniya
36,500Goyet g'orlari, Mozet, Belgiya
33,500Razboinichya g'ori, Oltoy tog'lari, Oltoy Respublikasi, Rossiya Markaziy Osiyo
33,500–26,500Kostyonki-Borshchyovo arxeologik majmuasi ustida Don daryosi, Voronej, g'arbiy Rossiya
31,000Predmostí, Moraviya, Chexiya
26,000Chauvet g'ori, Vallon-Pont-d'Ark, Frantsiya (oyoq izlari)
17,200Ulaxon Sular, shimoliy Saxa Respublikasi, Rossiya Sibir
17,000–16,000Eliseevichi-I sayti, Bryansk viloyati, Dnepr daryosi havzasi, Rossiya

Keyinchalik taksonomiyasi tasdiqlanmagan paleolit ​​davridagi bir qator itlar ham mavjud. Bularga Germaniyadan (Kniegrotte, Oelknitz, Teufelsbrucke ), Shveytsariya (Monruz, Kesslerloch, Champre-veyres-Hauterive) va Ukraina (Mezin, Mejirich ). 15.000-13.500 YBP ni tashkil etadigan namunalar to'plami, ularning morfologiyasiga va ular topilgan arxeologik joylarga asoslanib, ishonchli tarzda uy hayvonlari itlari ekanligi aniqlandi. Ular qatoriga Ispaniya (Erralla), Frantsiya (Montespan, Le Morin, Le Closeau, Pont d'Abbon) va Germaniya (Bonn-Oberkassel ). Ushbu davrdan so'ng, Evrosiyo bo'ylab arxeologik joylardan uy hayvonlari itlarining qoldiqlari aniqlandi.[1]

Paleolit ​​davridagi itlarning namunalari nimani anglatishi haqidagi munozaralar tufayli 15000 dan 40.000 YBP gacha bo'lgan itlarni uyga keltirish mumkin emas. Bu genlarning moslashuvchanligi bilan bog'liq Kanis morfologiya va ularning orasidagi morfologik o'xshashliklar Canis lupus va Kanis tanish. Bundan tashqari, tahlil uchun mavjud bo'lgan pleystotsen bo'ri namunalarining kamligi va shuning uchun ularning morfologik o'zgarishi noma'lum. Yashash joyining turi, iqlimi va o'lja ixtisoslashuvi kulrang bo'ri populyatsiyasining morfologik plastisiyasini sezilarli darajada o'zgartiradi, natijada bir qator morfologik, genetik va ekologik jihatdan ajralib turadigan bo'rilar morfotiplari paydo bo'ladi. Zooarxeologlar ishlash uchun asos yo'qligi sababli, itlarni xonakilashtirishning boshlang'ich ko'rsatkichlari va kech pleystotsen bo'rilarining har xil turlarini farqlash qiyin. ekomorflar, bu ham erta itlar, ham bo'rilarni noto'g'ri identifikatsiyalashga olib kelishi mumkin. Bundan tashqari, mahalliylashtirish davrida mahalliy bo'ri populyatsiyalari bilan tarixga qadar davom etadigan aralashma o'zlarining xulq-atvorida odatlangan, ammo morfologiyasida bo'riga o'xshash kanidlarga olib kelishi mumkin. Dastlabki bo'rilarni aniqlashga urinish, bo'ri itlari, yoki faqat morfologik tahlil orqali proto-itlar genetik tahlillarni kiritmasdan mumkin emas.[1]

A domestication study looked at the reasons why the archeological record that is based on the dating of fossil remains often differed from the genetic record contained within the cells of living species. The study concluded that our inability to date domestication is because domestication is a continuum and there is no single point where we can say that a species was clearly domesticated using these two techniques. The study proposes that changes in morphology across time and how humans were interacting with the species in the past needs to be considered in addition to these two techniques.[54]

..."wild" and "domesticated" exist as concepts along a continuum, and the boundary between them is often blurred — and, at least in the case of wolves, it was never clear to begin with.

— Raymond Pierotti[10]

Dog domestication

... Remove domestication from the human species, and there's probably a couple of million of us on the planet, max. Instead, what do we have? Seven billion people, climate change, travel, innovation and everything. Domestication has influenced the entire earth. And dogs were the first. For most of human history, we're not dissimilar to any other wild primate. We're manipulating our environments, but not on a scale bigger than, say, a herd of African elephants. And then, we go into partnership with this group of wolves. They altered our relationship with the natural world. ...

— Greger Larson[55][56]

The earlier association of dogs with humans may have allowed dogs to have a profound influence on the course of early human history and the development of civilization. However, the timing, geographic locations, and ecological conditions that led to dog domestication are not agreed upon.[3]

There is clear evidence that dogs were derived from grey wolves during the initial phases of domestication and that no other canine species was involved. The wolf population(s) that were involved are likely to be extinct. Despite numerous genetic studies of both modern dogs and ancient dog remains, there is no firm consensus regarding either the timing or location(s) of domestication, the number of wolf populations that were involved, or the long-term effects domestication has had on the dog's genome.[57]

Genetic studies suggest a domestication process commencing over 25,000 YBP, in one or several wolf populations in either Europe, the high Arctic, or eastern Asia. The remains of large carcasses left by human hunter-gatherers may have led some wolves into entering a migratory relationship with humans. This could have led to their divergence from those wolves that remained in the one territory. A closer relationship between these wolves — or proto-dogs — and humans may have then developed, such as hunting together and mutual defence from other carnivores and other humans. Around 10,000 YBP agriculture was developed resulting in a sedentary lifestyle, along with phenotype divergence of the dog from its wolf ancestors, including variance in size. In Viktoriya davri, directed human tanlov zamonaviyni rivojlantirdi dog breeds, which resulted in a vast range of phenotypes. Each of these domestication phases have left their mark on the dog's genome. Ikki population bottlenecks occurred to the dog lineage, one due to the initial domestication and one due to the formation of dog breeds.[3]

Sababi

Postglasial davrdagi harorat evolyutsiyasi, dan keyin Oxirgi muzlik maksimal darajasi, Yosh Dryasning katta qismida juda past haroratni ko'rsatib, iliqlik darajasiga erishish uchun keyin tez ko'tariladi Golotsen, asoslangan Grenlandiyadagi muz tomirlari.[58]

The domestication of animals and plants was triggered by the climatic and environmental changes that occurred after the peak of the Last Glacial Maximum around 21,000 YBP and which continue to this present day. Ushbu o'zgarishlar oziq-ovqat olishni qiyinlashtirdi. Birinchi xonadonlar kulrang bo'ri (Canis lupus) at least 15,000 YBP. The Yosh Dryas that occurred 12,900 YBP was a period of intense cold and aridity that put pressure on humans to intensify their foraging strategies. With the closing of the Younger Dryas at the beginning of the Golotsen around 11,700 YBP, favorable climatic conditions and increasing human populations led to small-scale animal and plant domestication, which allowed humans to augment the food that they were obtaining through ovchilarni yig'ish. The Neolitik o'tish Evroosiyo, Shimoliy Afrika va Janubiy va Markaziy Amerika bo'ylab joylarda qishloq xo'jaligi jamiyatlarini paydo bo'lishiga olib keldi.[59]

Time of domestication

Akvarel tracing made by archaeologist Henri Breuil dan g'or rasmlari of a wolf-like canid, Shrift-de-Gaum, France dated 19,000 years ago.

In 2015, a study undertook an analysis of the complete mitogenome sequences of 555 modern and ancient dogs. The sequences showed an increase in the population size approximately 23,500 YBP, which broadly coincides with the proposed genetic divergence of the ancestors of dogs and present-day wolves before the Last Glacial Maximum. A ten-fold increase in the population size occurred after 15,000 YBP, which may be attributable to domestication events and is consistent with the demographic dependence of dogs on the human population.[60]

Place of domestication

Locating the origin of dogs is made difficult by the lack of data on extinct Pleistocene wolves, the small morphological changes that occurred between wild and domestic populations during the first phases of domestication, and the lack of an accompanying human material culture at this time.[4]

Ijtimoiylashuv

Humans and wolves both exist in complex social groups. How humans and wolves got together remains unknown. One view holds that domestication is a process that is difficult to define. Ushbu atama tomonidan ishlab chiqilgan antropologlar with a human-centric view in which humans took wild animals (tuyoqlilar ) and bred them to be "domestic", usually in order to provide improved food or materials for human consumption. That term may not be appropriate for a large carnivore such as the dog. This alternate view regards dogs as being either ijtimoiylashdi and able to live among humans, or unsocialized. There exist today dogs that live with their human families but are unsocialized and will threaten strangers defensively and aggressively no differently than a wild wolf. There also exists a number of cases where wild wolves have approached people in remote places, attempting to initiate play and to form companionship.[61] One such notable wolf was Romeo, a gentle black wolf that formed relationships with the people and dogs of Juneau, Alaska.[62] This view holds that before there could have been domestication of the wolf, there had to have been its socialization.[61][63]

Komensal yo'l

Mammoth bone dwelling, Mejirich site, Ukraine.

Animal domestication a coevolutionary populyatsiya romanga moslashganda tanlangan bosimga javob beradigan jarayon joy rivojlanayotgan xatti-harakatlar bilan boshqa turni o'z ichiga olgan.[2]

The dog is a classic example of a domestic animal that likely traveled a komensal pathway into domestication. The dog was the first domesticant, and was domesticated and widely established across Eurasia before the end of the Pleystotsen, well before cultivation or the domestication of other animals.[28] It may have been inevitable that the first domesticated animal came from the order of carnivores as these are less afraid when approaching other species. Within the carnivores, the first domesticated animal would need to exist without an all-meat diet, possess a running and hunting ability to provide its own food, and be of a controllable size to coexist with humans, indicating the family Canidae, and the right temperament[64] with wolves being among the most gregarious and cooperative animals on the planet.[65][66]

Ancient DNA supports the hypothesis that dog domestication preceded the emergence of agriculture[36][37] and was initiated close to the Last Glacial Maximum when hunter-gatherers preyed on megafauna, and when proto-dogs might have taken advantage of carcasses left on site by early hunters, assisted in the capture of prey, or provided defense from large competing predators at kill-sites.[36] Wolves were probably attracted to human campfires by the smell of meat being cooked and discarded refuse in the vicinity, first loosely attaching themselves and then considering these as part of their home territory where their warning growls would alert humans to the approach of outsiders.[67] The wolves most likely drawn to human camps were the less-aggressive, subdominant pack members with lowered flight response, higher stress thresholds, less wary around humans, and therefore better candidates for domestication.[68] The earliest sign of domestication in dogs was the neotenization of skull morphology[68][69][70] and the shortening of snout length that results in tooth crowding, reduction in tooth size, and a reduction in the number of teeth,[71][68] bu tajovuzni kamaytirish uchun kuchli tanlov bilan bog'liq.[68][69] This process may have begun during the initial commensal stage of dog domestication, even before humans began to be active partners in the process.[2][68]

Montage showing the morphological variation of the dog.

A maternal mDNA, paternal yDNA, and mikrosatellit assessment of two wolf populations in North America and combined with satellite telemetry data revealed significant genetic and morphological differences between one population that migrated with and preyed upon caribou, and another territorial ekotip population that remained in a boreal coniferous forest. Though these two populations spend a period of the year in the same place, and though there was evidence of gene flow between them, the difference in prey–habitat specialization has been sufficient to maintain genetic and even coloration divergence.[2][72] A study has identified the remains of a population of extinct Pleystotsen Beringian bo'rilar with unique mDNA signatures. The skull shape, tooth wear, and isotopic signatures suggested these were specialist megafauna hunters and scavengers that became extinct while less specialized wolf ecotypes survived.[2][73] Analogous to the modern wolf ecotype that has evolved to track and prey upon caribou, a Pleistocene wolf population could have begun following mobile hunter-gatherers, thus slowly acquiring genetic and phenotypic differences that would have allowed them to more successfully adapt to the human habitat.[2][74]

Even today, the wolves on Ellesmere oroli do not fear humans, which is thought to be due to them seeing humans so little, and they will approach humans cautiously, curiously and closely.[75][76][77][78]

See further: Megafaunal bo'ri

Grey wolf admixture

Since domestication, dogs have traveled alongside humans across most of the planet, often hybridizing with local wolves. This has resulted in complex patterns of ancient and recent admixture among both the wild and the domestic canids.[57] The β-defensin gene responsible for the black coat of North American wolves was the result of a single introgression from early Native American dogs in the Yukon between 1,600 and 7,200 YBP.[79]

Studies of whole-genome sequences indicate admixture between the dog-wolf ancestor and golden jackals. There is evidence of admixture that occurred after domestication that is common within local populations of wolves and dogs. This implies that the genomic diversity found in dogs may represent interbreeding with local wolf populations and not their descent from them, which confounds the ability to infer the dog's origin.[3] The short divergence time between dogs and wolves followed by their continuous admixture has led to 20% of the genome of East Asian wolves and 7–25% of the genome of European and Middle Eastern wolves showing contributions from dogs.[1]

Whole genome sequencing indicates that while there has been widespread geneflow from dogs into different wolf populations, the world's dog population forms a homogenous group with little evidence of outbreeding with wolves, apart from deliberate crossings such as the Sarloos wolfdog.[80] DNA from ancient dogs and wolves suggest that dogs were almost entirely reproductively isolated from wolves in both the Americas and Europe for more than 10,000 years, although limited gene flow has likely occurred in specific lineages, such as in arctic dogs.[4] Wolves have maintained their phenotype differences from the dog, which indicates low-frequency hybridization. There was almost no admixture detected in the North American specimens.[81]

Genetic changes

Reduction in size under selektiv naslchilik – grey wolf and chihuahua skulls.
The wolf's family portrait reveals a diversity of form among breeds of domestic dogs.

Charlz Darvin uy hayvonlarining yovvoyi ajdodlaridan farq qiladigan oz sonli xususiyatlarini tan oldi. Shuningdek, u ongli kishining farqini birinchi bo'lib tan oldi selektiv naslchilik unda odamlar to'g'ridan-to'g'ri kerakli xususiyatlarni tanlaydilar va bu xususiyatlar yon mahsulot sifatida rivojlanib boradigan ongsiz ravishda tanlanadi. tabiiy selektsiya yoki boshqa xususiyatlar bo'yicha tanlovdan.[82][83] Uy hayvonlari ko'ylagi ranglari bilan bir qatorda to'qima, mitti va ulkan navlari, ularning ko'payish tsiklidagi o'zgarishlarga ega va boshqa ko'plab odamlarda tishlarning zichligi va floppi quloqlari bor.

Garchi bu xususiyatlarning har biri 1959 yildan boshlab ovchilar va dastlabki dehqonlar tomonidan tanlangan bo'lsa, deb taxmin qilish oson. Dmitriy Belyayev kumush tulkilarning qafasga qo'yilgan qo'liga reaktsiyalarini sinab ko'rdi va nasl berish uchun uyatsiz, eng tajovuzkor shaxslarni tanladi. Uning gipotezasi xulq-atvor xususiyatini tanlab, u keyingi avlodlarning fenotipiga ta'sir ko'rsatishi va ularni tashqi ko'rinishini yanada uyg'unlashtirishi mumkin edi. Over the next 40 years, he succeeded in producing foxes with traits that were never directly selected for, including piebald coats floppy ears, upturned tails, shortened snouts, and shifts in developmental timing.[69][84][85] 1980-yillarda tadqiqotchi bir necha avlodlar ichida uy sharoitida yashovchan kiyiklarni ishlab chiqarish uchun palto rangi kabi xulq-atvor, kognitiv va ko'rinadigan fenotipik belgilar to'plamidan foydalangan.[84][86] Similar results for tameness and fear have been found for norka[87] va Yapon bedana.[88] In addition to demonstrating that domestic phenotypic traits could arise through selection for a behavioral trait, and domestic behavioral traits could arise through the selection for a phenotypic trait, these experiments provided a mechanism to explain how the animal domestication process could have begun without deliberate human forethought and action.[84]

The genetic difference between domestic and wild populations can be framed within two considerations. The first distinguishes between domestication traits that are presumed to have been essential at the early stages of domestication, and improvement traits that have appeared since the split between wild and domestic populations.[2][89][90] Domestication traits are generally fixed within all domesticates and were selected during the initial episode of domestication, whereas improvement traits are present only in a proportion of domesticates, though they may be fixed in individual breeds or regional populations.[2][90][91] A second issue is whether traits associated with the domestication syndrome resulted from a relaxation of selection as animals exited the wild environment or from positive selection resulting from intentional and unintentional human preference. Some recent genomic studies on the genetic basis of traits associated with the domestication syndrome have shed light on both of these issues.[2] A study published in 2016 suggested that there have been negative genetic consequences of the domestication process as well, that enrichment of disease-related gene variants accompanied positively selected traits.[92]

In 2010, a study identified 51 regions of the dog genome that were associated with phenotypic variation among breeds in 57 traits studied, which included body, cranial, dental, and long bone shape and size. There were 3 miqdoriy xususiyat lokuslari that explained most of the phenotypic variation. Indicators of recent selection were shown by many of the 51 genomic regions that were associated with traits that define a breed, which include body size, coat characteristics, and ear floppiness.[93] Geneticists have identified more than 300 genetic loci and 150 genes associated with coat color variability.[84][94] Knowing the mutations associated with different colors has allowed the correlation between the timing of the appearance of variable coat colors in horses with the timing of their domestication.[84][95] Other studies have shown how human-induced selection is responsible for the allelic variation in pigs.[84][96] Together, these insights suggest that, although natural selection has kept variation to a minimum before domestication, humans have actively selected for novel coat colors as soon as they appeared in managed populations.[84][97]

In 2015, a study looked at over 100 pig genome sequences to ascertain their process of domestication. A model that fitted the data included admixture with a now extinct arvohlar populyatsiyasi of wild pigs during the Pleystotsen. The study also found that despite back-crossing with wild pigs, the genomes of domestic pigs have strong signatures of selection at genetic loci that affect behavior and morphology. The study concluded that human selection for domestic traits likely counteracted the homogenizing effect of gene flow from wild boars and created mahalliylashtirish orollari genomda. Xuddi shu jarayon boshqa uy hayvonlariga ham tegishli bo'lishi mumkin.[41][98]

In 2014, a whole genome study of the DNA differences between wolves and dogs found that dogs did not show a reduced fear response but did show greater sinaptik plastika. Synaptic plasticity is widely believed to be the cellular correlate of learning and memory, and this change may have altered the learning and memory abilities of dogs in comparison to wolves.[99]

Dietary adaptation

Tananing umumiy o'lchamidagi a o'rtasidagi farq Cane Corso (Italyan mastifi) va a Yorkshire terrier 30 barobardan oshiqroq, ammo ikkalasi ham bir turga mansub.

Selection appears to have acted on the dog's metabolic functions to cope with changes in dietary fat, followed later with a dietary increase in starch associated with a more commensal lifestyle.[3]

The dog genom compared to the wolf genome shows signs of having undergone positive selection, these include genes relating to brain function and behavior, and to lipid metabolizm. This ability to process lipids indicates a dietary target of selection that was important when proto-dogs hunted and fed alongside hunter-gatherers. The evolution of the dietary metabolism genes may have helped process the increased lipid content of early dog diets as they scavenged on the remains of carcasses left by hunter-gatherers.[100] Prey capture rates may have increased in comparison to wolves and with it the amount of lipid consumed by the assisting proto-dogs.[100][40][101] A unique dietary selection pressure may have evolved both from the amount consumed, and the shifting composition of, tissues that were available to proto-dogs once humans had removed the most desirable parts of the carcass for themselves.[100] A study of the mammal biomass during modern human expansion into the northern Mammoth steppe found that it had occurred under conditions of unlimited resources, and that many of the animals were killed with only a small part consumed or left unused.[102]

See further: Fenotipik plastika

Xulq-atvor

The key phase in domestication appears to have been changes in social behavior and its corresponding oksitotsin retseptorlari genlar va asabiy -related genes. Behavior differences between dogs and wolves may be contributed by tarkibiy o'zgarish in the genes that are associated with human Williams-Beuren syndrome. This syndrome causes increased hyper-sociability, which may have been important during domestication.[57]

Aslida ishlab chiqarish bilan bog'liq bo'lgan xususiyatlar uchun tanlangan boshqa uy hayvonlaridan farqli o'laroq, itlar dastlab xatti-harakatlari uchun tanlangan.[103][104] In 2016, a study found that there were only 11 fixed genes that showed variation between wolves and dogs. These gene variations were unlikely to have been the result of natural evolution, and indicate selection on both morphology and behavior during dog domestication. There was evidence of selection during dog domestication of genes that affect the adrenalin va noradrenalin biosintez yo'l. These genes are involved in the synthesis, transport and degradation of a variety of neurotransmitters, particularly the katekolaminlar o'z ichiga oladi dopamin va noradrenalin. Recurrent selection on this pathway and its role in emotional processing and the fight-or-flight response[104][105] suggests that the behavioral changes we see in dogs compared to wolves may be due to changes in this pathway, leading to tameness and an emotional processing ability.[104] Dogs generally show reduced fear and aggression compared to wolves.[104][106] Some of these genes have been associated with aggression in some dog breeds, indicating their importance in both the initial domestication and then later in breed formation.[104]

In 2018, a study identified 429 genes that differed between modern dogs and modern wolves. As the differences in these genes could also be found in ancient dog fossils, these were regarded as being the result of the initial domestication and not from recent breed formation. These genes are linked to neural crest va markaziy asab tizimi rivojlanish. These genes affect embriogenez and can confer tameness, smaller jaws, floppy ears, and diminished craniofacial development, which distinguish domesticated dogs from wolves and are considered to reflect domestication syndrome. The study proposes that domestication syndrome is caused by alterations in the migration or activity of neural crest cells during their development. The study concluded that during early dog domestication, the initial selection was for behavior. This trait is influenced by those genes which act in the neural crest, which led to the phenotypes observed in modern dogs.[107]

Role of epigenetics

Studies are now exploring the role of epigenetika in the domestication process and in regulating domestic phenotypes. Differences in gormonal expression that are associated with domestication syndrome may be linked to epigenetic modifications. Additionally, a recent study that compared the metilatsiya patterns of dogs with those of wolves found 68 significantly different methylated sites. These included sites which are linked to two neyrotransmitter genes associated with bilish.[6]

Similar to humans, wolves show strong social and emotional bonds within their groupings, and this relationship might have been the foundation for the evolution of dog-human bonding.[108][109] In 2019, a literature review led to a new theory named Active Social Domestication, in which the social environment of the dog ancestor induced neuro-physiological changes that caused an epigenetic cascade, which led to the rapid development of domestication syndrome.[108][110]

Dog and human convergent evolution

As a result of the domestication process there is evidence of konvergent evolyutsiyasi having occurred between dogs and humans.[111] Dog evolution and domestication is tightly linked with that of humans. Dogs suffer from the same common diseases – such as cancer, diabetes, heart disease, and neurological disorders – as do humans. The underlying disease patologiya is similar to humans, as is their responses and outcomes to treatment.[57]

Parallel evolyutsiya

Itning ko'ylagi o'zgarishini ko'rsatadigan montaj.

Being the first domesticated species has created a strong bond between dogs and humans and entwined their histories. There is an extensive list of genlar that showed signatures of parallel evolution in dogs and humans. A suite of 311 genes under positive selection in dogs are related to a large number of overlapping loci which show the same patterns in humans, and these play a role in digestion, neurological processes, and some being involved with cancers. This fact can be used to study the coevolution of gene function. Dogs accompanied humans when they first migrated into new environments. Both dogs and humans have adapted to different environmental conditions, with their genomes showing parallel evolyutsiya. These include adaptation to high altitude, low oxygen gipoksiya conditions, and genes that play a role in digestion, metabolism, neurological processes, and some related to cancer. It can be inferred from those genes which act on the serotonin system in the brain that these have given rise to less aggressive behavior when living in a crowded environment.[1]

Behavioral evidence

Konvergent evolyutsiya is when distantly related species independently evolve similar solutions to the same problem. For example, fish, pingvinlar va delfinlar have each separately evolved qanotchalar as a solution to the problem of moving through the water. What has been found between dogs and humans is something less frequently demonstrated: psychological convergence. Dogs have independently evolved to be cognitively more similar to humans than we are to our closest genetic relatives.[111]:60 Dogs have evolved specialized skills for reading human social and communicative behavior. These skills seem more flexible – and possibly more human-like – than those of other animals more closely related to humans phylogenetically, such as chimpanzees, bonobos and other maymunlar. This raises the possibility that convergent evolution has occurred: both Kanis tanish va Homo sapiens might have evolved some similar (although obviously not identical) social-communicative skills – in both cases adapted for certain kinds of social and communicative interactions with human beings.[112]

The pointing gesture is a human-specific signal, is referential in its nature, and is a foundation building-block of human communication. Inson go'daklari buni birinchi og'zaki so'zdan bir necha hafta oldin oladi.[113] 2009 yilda bir tadqiqotda itlar va odam bolalari ko'rsatadigan imo-ishoralarga javoblarni solishtirildi. The study showed little difference in the performance of 2-year-old children and dogs, while 3-year-old children's performance was higher. Natijalar shuni ko'rsatdiki, barcha sub'ektlar o'zlarining avvalgi tajribalarini umumlashtirib, nisbatan yangi ko'rsatuvchi imo-ishoralarga javob berishlari mumkin edi. These findings suggest that dogs demonstrating a similar level of performance as 2-year-old children can be explained as a joint outcome of their evolutionary history as well as their socialization in a human environment.[114]

Later studies support koevolyutsiya in that dogs can discriminate the emotional expressions of human faces,[115] and that most people can tell from a bark whether a dog is alone, being approached by a stranger, playing, or being aggressive,[116] and can tell from a growl how big the dog is.[117]

In 2015, a study found that when dogs and their owners interact, extended ko'z bilan aloqa qilish (mutual qarash ) increases oksitotsin levels in both the dog and its owner. As oxytocin is known for its role in maternal bonding, it is considered likely that this effect has supported the coevolution of human-dog bonding.[118] One observer has stated, "The dog could have arisen only from animals predisposed to human society by lack of fear, attentiveness, curiosity, necessity, and recognition of advantage gained through collaboration....the humans and wolves involved in the conversion were sezgir, observant beings constantly making decisions about how they lived and what they did, based on the perceived ability to obtain at a given time and place what they needed to survive and thrive. They were social animals willing, even eager, to join forces with another animal to merge their sense of group with the others' sense and create an expanded super-group that was beneficial to both in multiple ways. They were individual animals and people involved, from our perspective, in a biological and cultural process that involved linking not only their lives but the evolutionary fate of their heirs in ways, we must assume, they could never have imagined. Powerful emotions were in play that many observers today refer to as sevgi – boundless, unquestioning love."[11]

Human adoption of some wolf behaviors

... Isn't it strange that, our being such an intelligent primate, we didn't domesticate chimpanzees as companions instead? Why did we choose wolves even though they are strong enough to maim or kill us? ...

In 2002, a study proposed that immediate human ancestors and wolves may have domesticated each other through a strategic alliance that would change both respectively into humans and dogs. The effects of human psychology, hunting practices, hududiylik and social behavior would have been profound.[119]

Early humans moved from scavenging and small-game hunting to big-game hunting by living in larger, socially more-complex groups, learning to hunt in packs, and developing powers of cooperation and negotiation in complex situations. As these are characteristics of wolves, dogs and humans, it can be argued that these behaviors were enhanced once wolves and humans began to cohabit. Communal hunting led to communal defense. Wolves actively patrol and defend their scent-marked territory, and perhaps humans had their sense of territoriality enhanced by living with wolves.[119] One of the keys to recent human survival has been the forming of partnerships. Strong bonds exist between same-sex wolves, dogs and humans and these bonds are stronger than exist between other same-sex animal pairs. Today, the most widespread form of inter-species bonding occurs between humans and dogs. The concept of friendship has ancient origins but it may have been enhanced through the inter-species relationship to give a survival advantage.[119][120]

In 2003, a study compared the behavior and ethics of chimpanzees, wolves and humans. Cooperation among humans' closest genetic relative is limited to occasional hunting episodes or the persecution of a competitor for personal advantage, which had to be tempered if humans were to become domesticated.[65][121] The closest approximation to human morality that can be found in nature is that of the grey wolf, Canis lupus. Wolves are among the most gregarious and cooperative of animals on the planet,[65][66] and their ability to cooperate in well-coordinated drives to hunt prey, carry items too heavy for an individual, provisioning not only their own young but also the other pack members, babysitting etc. are rivaled only by that of human societies. Similar forms of cooperation are observed in two closely related canids, the Afrikalik yovvoyi it va Osiyo teshik, therefore it is reasonable to assume that canid sociality and cooperation are old traits that in terms of evolution predate human sociality and cooperation. Today's wolves may even be less social than their ancestors, as they have lost access to big herds of tuyoqlilar and now tend more toward a lifestyle similar to coyotes, jackals, and even foxes.[65] Social sharing within families may be a trait that early humans learned from wolves,[65][122] and with wolves digging dens long before humans constructed huts it is not clear who domesticated whom.[123][65][121]

Bison surrounded by grey wolf pack.

Ustida mammoth steppe the wolf's ability to hunt in packs, to share risk fairly among pack members, and to cooperate moved them to the top of the Oziq ovqat zanjiri above lions, hyenas and bears. Some wolves followed the great kiyik herds, eliminating the unfit, the weaklings, the sick and the aged, and therefore improved the herd. These wolves had become the first pastoralists hundreds of thousands of years before humans also took to this role.[123] The wolves' advantage over their competitors was that they were able to keep pace with the herds, move fast and enduringly, and make the most efficient use of their kill by their ability to "wolf down" a large part of their quarry before other predators had detected the kill. The study proposed that during the Last Glacial Maximum, some of our ancestors teamed up with those pastoralist wolves and learned their techniques.[65][124]

Many of our ancestors remained gatherers and scavengers, or specialized as fish-hunters, hunter-gatherers, and hunter-gardeners. However, some ancestors adopted the pastoralist wolves' lifestyle as herd followers and herders of reindeer, horses, and other hoofed animals. They harvested the best stock for themselves while the wolves kept the herd strong, and this group of humans was to become the first herders and this group of wolves was to become the first dogs.[123][65]

First dogs

The dog was the first species and the only large yirtqich to have been domesticated. Over the past 200 years, dogs have undergone rapid fenotipik change and were formed into today's modern dog breeds sababli sun'iy tanlov imposed by humans. These breeds can vary in size and weight from a 0.46 kg (1.0 lb) teacup pudel to a 90 kg (200 lb) giant mastif. The skull, body, and limb proportions vary significantly between breeds, with dogs displaying more phenotypic diversity than can be found within the entire order of carnivores. Some breeds demonstrate outstanding skills in herding, retrieving, scent detection, and guarding, which demonstrates the functional and behavioral diversity of dogs. There have been major advances in understanding the genes that gave rise to the phenotypic traits of dogs. The first dogs were certainly wolflike; however, the phenotypic changes that coincided with the dog–wolf genetic divergence are not known.[3]

Bonn-Oberkassel iti

Majburiy of the oldest recognised dog discovered in Bonn-Oberkassel, Germany, and dated 14,200 years old.

In 1914, on the eve of the Birinchi jahon urushi, two human skeletons were discovered during basalt quarrying at Oberkassel, Bonn Germaniyada. With them were found a right mandible of a "wolf" and other animal bones.[125] After the end of the First World War, in 1919 a full study was made of these remains. The mandible was recorded as "Canis lupus, the wolf" and some of the other animal bones were assigned to it.[126] The remains were then stored and forgotten for fifty years. In the late 1970s there was renewed interest in the Oberkassel remains and the mandible was re-examined and reclassified as belonging to a domesticated dog.[127][128][129] The mitoxondrial DNK sequence of the mandible was matched to Canis lupus tanish – dog,[36] and confirms that the Oberkassel dog is a direct ancestor of today's dogs.[130] The bodies were dated to 14,223 YBP.[131] This implies that in Western Europe there were morphologically and genetically "modern" dogs in existence around 14,500 YBP.[132]

Later studies assigned more of the other animal bones to the dog until most of a skeleton could be assembled.[132] The humans were a man aged 40 years and a woman aged 25 years. All three skeletal remains were found covered with large 20 cm thick basalt blocks and were sprayed with red hematite powder.[131] Bir fikrga ko'ra, it ikki odam bilan birga ko'milgan.[132] A tooth belonging to a smaller and older dog was also identified but it had not been sprayed with red powder.[131] The cause of the death of the two humans is not known.[132] A patologiya study of the dog remains suggests that it had died young after suffering from canine distemper between ages 19 and 23 weeks.[131] The dog could not have survived during this period without intensive human care.[132][131] During this period the dog was of no utilitarian use to humans,[131] and suggests the existence of emotional or symbolic ties between these humans and this dog.[132] In conclusion, near the end of the Late Pleistocene at least some humans regarded dogs not just materialistically, but had developed emotional and caring bonds for their dogs.[131]

Ice Age dogs

In 2020, the sequencing of ancient dog genomes indicates that dogs share a common ancestry and descended from an ancient, now-extinct wolf population - or closely related wolf populations - which was distinct from the modern wolf lineage. Since domestication, there was almost negligible gene flow from wolves into dogs but substantial gene flow from dogs into wolves across Eurasia. There were some wolves that were related to all ancient and modern dogs. There was no gene flow detected from the Tibetan wolf into Tibetan dogs although both carry the EPAS1 gene associated with high-altitude oxygen adaptation, which indicates probable gene flow. Qo'ylar va qadimiy amerikalik itlar orasida va afrikalik oltin bo'ri va afrikalik itlar orasida juda oz miqdordagi gen oqimi aniqlangan, ammo qaysi yo'nalishda aniqlanmagan. So'nggi muzlik davri (11 700 YBP) yaqiniga kelib, ajdodlarning beshta nasl-nasabi bir-biridan ajralib turdi va itlardan olingan it namunalarida o'z ifodasini topdi. Neolitik davr Levant (7000 YBP), Mezolit davr Kareliya (10.900 YBP), mezolit davri Baykal (7000 YBP), qadimiy Amerika (4000 YBP) va Yangi Gvineya qo'shiqchisi (Bugungi kun).[8]

Dunyo iti aholi tarkibi sharqiy-g'arbiy o'qi bo'ylab bo'linishni kuzatib boradi. G'arbiy tomonga Evropaning g'arbiy qismidan qadimgi va zamonaviy itlar va Afrikadan zamonaviy itlar kiradi. Sharqiy tomonida Evropaga qadar Sibirdagi Amerika va Baykal bilan aloqada bo'lgan qadimgi itlar va aralashtirilmagan Sharqiy Osiyo nasabini ifodalovchi dingo va Yangi Gvineya qo'shiqchi iti bo'lgan zamonaviy Sharqiy Osiyo itlari mavjud.[8]

Qadimgi va zamonaviy Evropa itlari sharq itlari bilan yaqin Sharq itlariga qaraganda yaqinroq aloqada bo'lib, bu Evropada katta aralashma hodisasini ko'rsatmoqda. 10.900 YBPga oid eng qadimgi mezolitik kareliya iti qisman sharqiy it nasabidan va qisman Levant nasabidan kelib chiqqan. 7000 YBPga oid eng yangi neolit ​​davri evropalik it Karelian va Levantin nasablari aralashmasi ekanligi aniqlandi. Shvetsiyaning janubi-g'arbiy qismida topilgan 5000 YBP ga oid neolitik itning nasl-nasabi zamonaviy Evropa itlarining 90-100% ajdodi edi. Bu shuni anglatadiki, Evropada shunga o'xshash yarim karel va yarim levant itlarining populyatsiyasi, ammo Shvetsiyadan kelib chiqishi shart emas - boshqa itlar populyatsiyasining hammasini almashtirgan. Ushbu topilmalar birgalikda 54% kareliya va 46% levantiyalik ajdodlarga ega bo'lgan zamonaviy Evropa itlari uchun ikki tomonlama nasabni qo'llab-quvvatlaydi.[8]

Qadimgi itlar genomlari qadimgi odam genomlari bilan vaqt, makon va madaniy sharoitda taqqoslanib, ularning umuman bir-biriga mos kelishini aniqladilar. Ular odatda o'xshash xususiyatlarga ega, ammo ular vaqt o'tishi bilan farq qiladi. Katta farqlar bor edi: xuddi shu itlarni neolit ​​Levantida ham, keyinchalik ham topish mumkin edi Xalkolit Eron (5800 YBP) bo'lsa-da, har birining odam populyatsiyasi har xil edi; neolitik Irlandiyada (4800 YBP) va Germaniyada (7000 YBP) itlar ko'proq shimoliy evropalik ovchilar bilan, odamlar Levant odamlari bilan ko'proq aloqada bo'lgan; va Bronza davri Pontika-Kaspiy dashtlari (3,800 YBP) va Simli buyumlar madaniyati Germaniya (4.700 YBP) insoniyat aholisidan uzoqlashdi Neolitik Evropa populyatsiyalari lekin itlar yo'q edi. Evropa itlari Yangi Gvineya qo'shiqchi itiga qaraganda Sibir va qadimiy amerikalik itlarga nisbatan kuchli genetik munosabatlarga ega, bu Sharqiy Osiyo kelib chiqishi, Amerika va Evropadagi odamlar o'rtasidagi dastlabki qutb munosabatlarini aks ettiradi. Baykal ko'lida yashovchi odamlar 18000 - 24000 YBP evropaliklarning g'arbiy qismi bilan genetik jihatdan aloqada bo'lib, tub amerikaliklarning ajdodlariga hissa qo'shgan, ammo keyinchalik ularning o'rnini boshqa populyatsiyalar egallagan. O'n ming yil o'tgach, taxminan 7000 YBP, Baykal ko'lidagi itlar hali ham Evropa va Amerika bilan munosabatlarni namoyish etdilar. Buning ma'nosi shuni anglatadiki, Evrosiyoning tsirkumpolyar bo'ylab itlar va odamlar uchun umumiy populyatsiya tuzilishi mavjud edi.[8]

Qadimgi odam genomlari Yaqin Sharqdan Evropaga neolit ​​davridagi dehqonlarning kengayish davriga to'g'ri keladigan katta ajdodlarning o'zgarishini ko'rsatadi. Qadimgi it mitoxondriyalari shuni taxmin qiladiki, ular itlar bilan birga bo'lgan, bu esa Evropada itlarning nasablarini o'zgartirishga olib kelgan. Ning kengayishi dasht chorvadorlari Corded Ware madaniyati bilan bog'liq va Yamnaya madaniyati Oxirgi neolit ​​va bronza asrlariga Evropa inson populyatsiyasining ajdodlarini o'zgartirdi, ammo ularga hamroh bo'lgan itlar Evropa itlarining populyatsiyasiga katta ta'sir ko'rsatmadi. Dasht chorvadorlari ham sharqqa qarab kengaygan, ammo Sharqiy Osiyo xalqlarining ajdodlariga ozgina ta'sir ko'rsatgan. Biroq, ko'plab xitoylik itlar g'arbiy Evroosiyoning 3800 YBP nasl-nasabi o'rtasidagi aralashmaning mahsulotidir Srubnaya madaniyati it va dingo ajdodi va Yangi Gvineya qo'shiqchi it. Zamonaviy Sibir itlarining populyatsiyasi, shuningdek, 7000 YBP ko'lidagi Baykal ko'li itlaridan kelib chiqqanligini ko'rsatadi, ammo Yangi Gvineya qo'shiq aytadigan itlarning ajdodlari juda kam yoki umuman yo'q.[8]

The AMY2B parhezni hazm qilishning birinchi bosqichida yordam beradigan oqsilni gen kodlari kraxmal va glikogen. Ushbu genning kengayishi erta itlarga kraxmalga boy dietadan foydalanish imkoniyatini beradi. Qishloq xo'jaligining boshida bir necha ming yillardan keyin keng tarqalgan ushbu moslashishga faqat ba'zi itlar ega bo'lgan.[8]

Itlar odamlar bilan bir qatorda ko'chib yurishgan, ammo ikkalasining harakati har doim ham bir-biriga to'g'ri kelmas edi, bu ba'zi hollarda odamlar itlarsiz ko'chib ketganligini yoki itlar inson guruhlari orasida, ehtimol madaniy yoki savdo buyumlari sifatida harakatlanishini ko'rsatdi. Itlar Evroosiyo bo'ylab va Amerikaga tarqalishgan, aftidan, odamlarning asosiy harakatlari ishtirok etmagan, bu sir bo'lib qolmoqda. O'tmishdagi tadqiqotlar itning kelib chiqqan joyini taxmin qilishgan, ammo bu tadqiqotlar bugungi genomik xilma-xillik namunalariga yoki zamonaviy bo'ri populyatsiyasiga bog'liqliklariga asoslangan. Yaqinda genlar oqimi va populyatsiyaning dinamikasi tufayli itning tarixi ushbu tadqiqotlarda yashiringan edi - itning geografik kelib chiqishi noma'lum bo'lib qolmoqda.[8]

Birinchi itlar ov qilish texnologiyasi sifatida

Sahro rok-arti a hujum qilgan ikkita it tasvirlangan muflon - Jazoir 3.200-1000 YBP.

Davomida Yuqori paleolit (50,000–10,000 YBP), odam sonining zichligi oshishi, pichoq va ovchilik texnologiyalari rivoji va iqlim o'zgarishi o'ljalarning zichligini o'zgartirib, ba'zi bo'ri populyatsiyasining omon qolishida hal qiluvchi ahamiyatga ega bo'lishi mumkin. Tozalashga moslashish, tanasining kichkina bo'lishi va ko'payish yoshining pasayishi, ularning ov samaradorligini yanada pasaytiradi va oxir-oqibat majburiy tozalashga olib keladi.[32][133] Bu eng qadimgi itlar shunchaki odam-komensal tozalovchi bo'lganmi yoki ular tarqalishini tezlashtirgan sherik yoki ovchi rolini o'ynaganmi, noma'lum.[32]

Tadqiqotchilar ilgari itlar bilan do'stlashish uchun asos bo'lgan odamlar va itlar o'rtasida ovchilik sherikligi mavjud edi.[134][135][136]Petroglif saytlarida 8000 YBP gacha bo'lgan tosh san'ati Shuvaymis va Jubba, Saudiya Arabistonining shimoli-g'arbiy qismida, ko'pchilik itlarning ov sahnalarida ishtirok etayotgani tasvirlangan, ba'zilari esa tasmalarda nazorat ostida.[137] Dan o'tish Kech pleystotsen erta Golotsen iqlim o'zgarishi sovuq va quruqdan iliqroq, namroq sharoitga va o'simlik va hayvonot dunyosining tez o'zgarishiga, katta o'txo'rlarning ochiq yashash joylarining katta qismi o'rmonlarga almashtirilganligi bilan ajralib turardi.[136] Erta Golotsen, o'q boshi texnologiyasidagi o'zgarishlar bilan bir qatorda ovchilar tomonidan qalin o'rmonlarda yarador ovni kuzatib borish va olish uchun ovchi itlardan foydalanilgan.[135][136] Itni ta'qib qilish, ta'qib qilish, hidlash va o'ljani ushlab turish qobiliyati odamlarning sezgi va joylashish qobiliyatlari ochiqroq yashash joylaridagi kabi keskin bo'lmagan o'rmonlarda ovchilarning muvaffaqiyatini sezilarli darajada oshirishi mumkin. Bugungi kunda ham itlardan o'rmonlarda ov qilish uchun foydalanilmoqda.[136]

Arktika zotlari

Birinchi it zotlari Arktikaning shimoliy-sharqiy Sibirida rivojlangan

Sled it turlari, 1833 yilda chizilgan.

Uy iti hozirda 9500 YBP edi Joxov oroli, Arktika shimoliy-sharqiy Sibir. Arxeologik kashfiyotlar Joxov maydonchasida zamonaviy ishlatilgan itlar jabduqlar tasmalarining qoldiqlarini o'z ichiga oladi. Inuit, oq ayiqlar va kiyiklarning suyak qoldiqlari, bu ovning keng doirasini va tana qismlarining katta qismini transport vositasiga olib borishni va 1500 km uzoqlikdan olib boriladigan obsidianlardan tayyorlangan asboblarni taklif qiladi. Ushbu topilmalar chana itlar yordamida uzoq masofalarga transportni taklif qiladi.[138]

Itlarning qoldiqlarini o'rganish shuni ko'rsatadiki, ular tanlangan holda chanalar itlari yoki ov itlari sifatida etishtirilgan bo'lib, bu o'sha paytda chanaklar itlari standarti va ov itlari standarti mavjudligini anglatadi. Chana it uchun eng maqbul kattalik termo-regulyatsiya asosida 20-25 kg ni tashkil qiladi, qadimgi chana itlar esa 16-25 kg gacha bo'lgan. Xuddi shu standart ushbu hududdan 2000 YBP va zamonaviy zamonaviy chana itlarining qoldiqlarida topilgan Sibir husky zoti standarti. Boshqa itlar 30 kilogrammdan ko'proq massaga ega edilar va ular bo'rilar bilan kesib o'tgan va qutb ayiqlarini ovlash uchun ishlatilgan itlarga o'xshaydilar. O'lganida, itlar boshlarini odamlar tanasidan ehtiyotkorlik bilan ajratib olishgan, ehtimol bu tantanali sabablarga ko'ra.[139]

Tadqiqot shuni ko'rsatadiki, kulrang bo'ri bilan umumiy ajdodlardan ajralib, itning rivojlanishi uch bosqichda davom etdi. Birinchisi, inson faoliyati natijasida vujudga kelgan ekologik maydon ichidagi ovqatlanish xatti-harakatlariga asoslangan tabiiy tanlanish edi. Ikkinchisi, uyg'unlikka asoslangan sun'iy tanlov edi. Uchinchisi, inson iqtisodiyoti doirasida aniq vazifalarni bajarishda yordam beradigan fazilatlarga ega bo'lgan nasllarni shakllantirishga asoslangan selektsiya yo'naltirilgan. Jarayon, uylanish tugaguniga qadar har bir bosqichda tezligi oshib borishi bilan 30.000-40.000 YBP boshlandi.[139]

Itlar Shimoliy Amerikaga shimoliy-sharqiy Sibirdan kiradi

Moddiy madaniyat Arktikada 9000 YBPda itlarni jabduq qilish uchun dalillar keltiradi. Ushbu itning qoldiqlaridan olingan qadimiy DNK ularning zamonaviy Arktika itlari bilan bir xil genetik naslga mansubligini va bu nasldan eng qadimgi amerikalik itlarning paydo bo'lishiga sabab bo'lganligini ko'rsatadi. Eng qadimgi mahalliy amerikalik itlardan beri itlar tomonidan genetik jihatdan turli xil nasablar paydo bo'lgan Thule odamlar va evropalik ko'chmanchilar. Evropalik itlar 10 ming yildan ko'proq vaqt oldin paydo bo'lgan it nasllarini almashtirdilar.[4]

Shimoliy Amerikada eng qadimgi it qoldiqlari topilgan Illinoys va radiokarbonli uchrashuv 9 900 YBPni bildiradi. Bunga uchta izolyatsiya qilingan dafn marosimi kiradi Koster sayti pastki qismga yaqin Illinoys daryosi yilda Grin okrugi va Stilwell II saytida 35 km masofada bitta dafn marosimi Payk okrugi. Ushbu itlar o'rtacha bo'yli 50 sm (20 dyuym) va vazni 17 kilogramm (37 lb) atrofida bo'lgan, juda faol hayot tarzi va turli xil morfologiyalarga ega bo'lgan kattalar edi. Izotoplarni tahlil qilish ba'zi kimyoviy elementlarni aniqlash uchun ishlatilishi mumkin, bu tadqiqotchilarga turlarning parhezi haqida xulosa qilishga imkon beradi. Suyakning izotopli tahlili kollagen asosan chuchuk suv baliqlaridan tashkil topgan parhezni ko'rsatadi. Evrosiyo bo'ylab shunga o'xshash itlarni dafn qilish, pleystotsen-golotsen davrida o'zgaruvchan muhit va o'lja turlariga moslashishga harakat qilgan odamlarga itni ovlashdagi ahamiyati bilan bog'liq deb o'ylashadi. Bu joylarda it yuqori darajadagi ijtimoiy mavqega ega edi.[140]

2018 yilda Shimoliy Amerika itlari qoldiqlari ketma-ketligini Sibir itlari va zamonaviy itlar bilan taqqoslaganda. Shimoliy Amerika qoldiqlariga eng yaqin qarindoshi - o'sha paytda materik bilan bog'langan Arktik shimoliy-sharqiy Sibirning Joxov orolida topilgan 9000 YBP qoldiqlari. Tadqiqot mDNA-dan xulosa qilishicha, barcha Shimoliy Amerika itlari 14,600 YBPga tegishli umumiy ajdodga ega edi va bu ajdod Joxov itining ajdodi bilan birgalikda ularning umumiy ajdodi 15,600 YBP dan ajralib chiqdi. Koster itlarining vaqti shuni ko'rsatadiki, itlar Shimoliy Amerikaga odamlar kirib kelganidan 4500 yil o'tgach, Sibirdan kirib kelishgan, keyingi 9000 yil davomida izolyatsiya qilingan va evropaliklar bilan aloqada bo'lgandan keyin ular endi yo'q, chunki ularning o'rnini Evroosiyo itlari egallagan. Kontaktgacha bo'lgan itlar noyob genetik imzoni namoyish etishdi, ammo nDNA ularning eng yaqin genetik qarindoshlari bugungi kunda arktik zotli itlar: Alaskan malamutlari, Grenlandiyalik itlar va Alyaskan huskylari va Sibir huskylari ekanligini ko'rsatmoqdalar.[141]

2019 yilda o'tkazilgan tadqiqotlar shuni ko'rsatdiki, dastlab Shimoliy Amerika Arktikasiga shimoliy-sharqiy Sibirdan olib kelingan itlar keyinchalik 2000 yil oldin boshlangan kengayish paytida Inuit bilan birga kelgan itlar bilan almashtirilgan. Ushbu Inuit itlari avvalgi itlar bilan taqqoslaganda genetik jihatdan xilma-xil va morfologik jihatdan xilma-xil edi. Bugungi kunda Arktika chanalari itlari Evropadan oldingi itlar nasabining Amerikadagi so'nggi avlodlari orasida.[142] 2020 yilda qadimgi itlar genomlarining ketma-ketligi shuni ko'rsatadiki, ikkita meksikalik zotda Chixuaxua 4% ni saqlaydi Xoloitzcuintli 3% mustamlakadan oldingi ajdodlar.[8]

Taymir bo'ri aralashmasi

The Grenlandiya iti 35000 yoshli bo'ridan meros bo'lib o'tgan 3,5% genetik materialni olib yuradi Taymir yarim oroli, Arktik Sibir.

2015 yilda olib borilgan tadqiqotlar natijasida 35000 YBP pleystotsen bo'ri qoldiqlari qoldiqlarining birinchi genomini xaritaga tushirdilar. Taymir yarim oroli, Arktik shimoliy Sibir va zamonaviy itlar va kulrang bo'rilar bilan solishtirganda. Taymir bo'ri itdan kulrang bo'ri ajdodidan it va kul bo'ri bir-biridan ajralib chiqishidan oldin ajralib chiqdi, demak, bugungi kunda kul bo'rilar populyatsiyasining aksariyati 35000 yil oldin yashagan, ammo suv ostida qolmasdan oldin yashagan ajdodlar populyatsiyasidan kelib chiqqan. The Bering quruqlik ko'prigi keyinchalik Evroosiyo va Shimoliy Amerika bo'rilarini izolyatsiya qilish bilan.[143]

Taymir bo'ri yuqori kenglik va odamlarning arktik populyatsiyalari bilan bog'liq bo'lgan nasllar bilan ko'proq allellarni (ya'ni gen ekspressionlarini) baham ko'rdi: Sibir husky va Grenlandiya iti va kamroq darajada Shar Pei va Finlyandiya spitsi. Grenlandiyadagi it 3,5 foiz Taymir bo'rining nasabini ko'rsatadi, bu Taymir bo'ri populyatsiyasi va to'rtta yuqori kenglikdagi nasl itlarining ajdodlari populyatsiyasi o'rtasidagi aralashuvni ko'rsatadi. Ushbu natijalarni shimoliy Evrosiyoda itlarning juda erta borligi yoki shimoliy bo'ri populyatsiyasida itlar yuqori kengliklarga kelguncha saqlanib qolgan Taymir bo'rining genetik merosi bilan izohlash mumkin. Ushbu introressiya yuqori kengliklarda yashovchi erta itlarni yangi va qiyin muhitga moslashish bilan ta'minlashi mumkin edi. Bu shuningdek, hozirgi it zotlarining ajdodlari bir nechta mintaqalardan kelib chiqqanligini ko'rsatadi.[143]:3–4 Taymir bo'ri va kulrang bo'rilar orasidagi aralashmani o'rganishga urinish ishonchsiz natijalarga olib keldi.[143]:23

Taymyr bo'ri Arktika zotlarining genetik tarkibiga qo'shganligi sababli, bu Taymir bo'rining avlodlari itlar Evropada uyg'unlashguncha va mahalliy kengliklarga aralashgan yuqori kengliklarga kelguniga qadar omon qolganligini va bu ikkalasi ham zamonaviy Arktika zotlari. Eng keng tarqalgan zooarxeologik it qoldiqlari asosida uy itlari, ehtimol, so'nggi 15000 yil ichida yuqori kengliklarga etib kelishgan. Taimyr bo'ri va Newgrange itlarining genomlaridan sozlangan mutatsion ko'rsatkichlar shuni ko'rsatadiki, zamonaviy bo'ri va itlar populyatsiyasi umumiy ajdoddan 20000 dan 60000 YBPgacha ajralib chiqqan. Bu shuni ko'rsatadiki, yoki itlar arxeologik yozuvlarda birinchi paydo bo'lishidan ancha oldin uyga qilingan yoki ular Arktikaga erta kelgan yoki ikkalasi ham.[7] Yana bir qarash shundaki, shimoliy zotlar o'zlarining ajdodlarining hech bo'lmaganda bir qismini Taymir bo'risi bilan izlashi mumkinligi sababli, bu bir nechta xonakilashtirish tadbirlarini o'tkazish imkoniyatini ko'rsatadi.[1]

2020 yilda yadro genomi 33000 YBP pleystotsen bo'risi tomonidan arxeologik joydan hosil bo'lgan. Yana daryosi, Arktika shimoliy-sharqiy Sibir. Yana bo'ri ketma-ketligi zamonaviy bo'rilarga qaraganda 35000 YBP Taimyr bo'risi bilan chambarchas bog'liq edi. Yana-Taymir bo'rilari va Kolumbiyadan oldingi, Joxov va zamonaviy chana itlar o'rtasida genlar oqimi borligi haqida dalillar mavjud edi. Bu shuni anglatadiki, genetik aralash Pleistosen bo'rilari va bu itlarning ajdodi o'rtasida sodir bo'lgan. So'nggi 9500 yil davomida chanalar itlari va zamonaviy kulrang bo'ri o'rtasida hech qanday aralashma mavjud emas edi. Grenlandiyadagi chana itlar 850 yil oldin Inuit odamlari bilan Grenlandiyaga kelganidan beri boshqa nasllardan ajratib turilgan. Ularning nasablari boshqa arktik nasllarga qaraganda Joxov itlariga nisbatan ko'proq genomik tarixni belgilaydi. Sled itlari boshqa itlarga nisbatan kraxmalga boy dietaga moslashishni ko'rsatmaydi, ammo Joxov itlarida bo'lmagan yog 'va yog' kislotalarining ko'p iste'mol qilinishiga moslashishini ko'rsatadi. Xuddi shu moslashuv Inuit va boshqa arktika xalqlarida ham topilgan. Bu shundan dalolat beradiki, chana itlari ular bilan birga yashagan odamlarning past kraxmalli va yog'li ovqatiga moslashgan.[138]

Itlar Yaponiyaga kiradi

Yaponiyada topilgan itning eng qadimiy qoldiqlari 9500 YBPga tegishli.[144] Golotsen boshlanishi va uning iliq ob-havosi bilan mo''tadil bargli o'rmonlar Xonsyu bosh oroliga tezlik bilan tarqaldi va megafaunani ovlashdan uzoqlashishga olib keldi (Naumanning fil va Yabening ulkan kiyiklari) tezroq ov qilish sika kiyiklari va yovvoyi cho'chqa zich o'rmonda. Shu bilan ov qilish texnologiyasida o'zgarishlar yuz berdi, shu jumladan o'qlar uchun kichikroq, uchburchak nuqtalarga o'tish. O'rganish Jōmon Tinch okeanining qirg'og'ida yashagan odamlar Xonsyu Holotsenaning dastlabki davrida ular itlarni dafn qilishgan va ehtimol itlardan sika kiyiklari va yovvoyi cho'chqalarni ovlash uchun asbob sifatida ishlatishgan, shunda ham Yaponiyada ovchilar hanuzgacha shunday qilishgan.[136]

Ovchi itlar yem-xashak jamiyatlariga katta hissa qo'shmoqda va etnografik yozuvlarda ularga tegishli ismlar berilgani, oila a'zolari sifatida muomala qilinganligi va boshqa itlarga alohida ajratilganligi ko'rsatilgan.[136][145] Ushbu maxsus davolash markerlar va qabr buyumlari bilan alohida dafn marosimlarini o'z ichiga oladi,[136][146][147] ajoyib ovchilar bo'lgan yoki ovda o'ldirilganlar ko'pincha hurmatga sazovor edilar.[136][148] Itning ov sherigi sifatida qadrlashi ularga jonli qurol maqomini beradi va hayotdagi va o'limdagi ijtimoiy mavqei mohir ovchilarnikiga o'xshab, "shaxsiyatni" egallashga ko'nikadi.[136][149]

Qasddan itlarga dafn qilish tuyoqlilarni ovlash bilan birga Evropadagi boshqa golotsen bargli o'rmonlarni boqish jamiyatlarida ham uchraydi.[150] va Shimoliy Amerika,[151][152] shuni ko'rsatib turibdiki Holarktika mo''tadil zonadagi ovchi itlar o'rmon tuyoqlilarni ovlashga keng moslashgan.[136]

Yaqin Sharqdan kelgan itlar Afrikaga kiradi

2020 yilda qadimgi itlar genomlarining ketma-ketligi zamonaviy itlarning nasablari ekanligini ko'rsatadi Saxara Afrikasi Levantdan yagona kelib chiqishi bilan ajralib turadi, bu erda ajdodlar namunasi 7000 YBPga tegishli. Ushbu topilma neolit ​​davrida Levantdan Afrikaga odamlarning mollari bilan birga gen oqimini aks ettiradi. O'shandan beri so'nggi bir necha yuz yilgacha afrikalik itlarga cheklangan genlar oqimi mavjud edi. Erondan kelgan itning avlodlari 5800 YBP va Evropadan kelgan itlar Levant it nasabini 2300 YBP o'rnini to'liq egalladilar. Bu Erondan odamlarning ko'chishi va Evropadan ozgina migratsiya bilan bog'liq edi. Bugun hammasi Yaqin Sharq itlar 81% qadimiy eronlik va 19% neolit ​​davri evropa ajdodlarini namoyish etadi.[8]

Afrikada 5900 YBP bo'lgan eng keksa it topilgan va u erda topilgan Merimde Beni-Salame Misrning Nil deltasidagi neolit ​​davri. Keyingi eng qadimgi sana 5500 YBP va Sudondagi Nil daryosidagi Esh Shareinabda topilgan. Bu shuni anglatadiki, it Osiyodan uy qo'ylari va echkilar bilan bir vaqtda kelgan.[153] Keyin it Afrikadan shimolga janubdan chorvachilik chorvachilarining yoniga yoyilib, Ugandadagi Ntusi shahridagi 925-1655 YBP, 950-1000 YBP arxeologik joylarda topilgan qoldiqlar bilan, Zambiyaning Kalomo shahrida, keyin esa Limpopo daryosining janubidagi joylarda va janubiy Afrika.[154] 2020 yilda qadimgi itlar genomlarining ketma-ketligi Afrikaning janubidan dalolat beradi Rodeziya tizmasi mustamlakachilikgacha bo'lgan 4% ajdodlarini saqlab qoladi.[8]

Itlar Janubiy Sharqiy Osiyo va Okeaniyaga janubiy Xitoydan kirib keladi

2020 yilda mDNA tomonidan qadimgi it qoldiqlari o'rganildi Sariq daryo va Yangtze daryosi Xitoyning janubiy havzalari shuni ko'rsatdiki, qadimgi itlarning aksariyati haplogroup A1b tarkibiga kirgan, avstraliyalik dingolar va Tinch okeanining mustamlakachilikgacha bo'lgan itlari, ammo bugungi kunda Xitoyda past chastotada. Namuna Tianluoshan arxeologik yodgorligi, Chjetszyan viloyat 7000 YBPga to'g'ri keladi va bazal butun nasabga. Ushbu gaplogrupga tegishli bo'lgan itlar bir paytlar janubiy Xitoyda keng tarqalib, so'ng Janubi-Sharqiy Osiyo orqali Yangi Gvineyaga tarqalib ketishgan va Okeaniya, ammo Xitoyda 2000 YBP o'rnini boshqa nasabdagi itlar egalladi.[155]

It zotlari

Itlar er yuzidagi eng o'zgaruvchan sutemizuvchilardir sun'iy tanlov dunyo miqyosida tan olingan 450 atrofida ishlab chiqarish it zotlari. Bu zotlar morfologiya bilan bog'liq bo'lgan o'ziga xos xususiyatlarga ega bo'lib, ular tana hajmi, bosh suyagi shakli, dum fenotipi, mo'yna turi va rangini o'z ichiga oladi. Ularning yurish-turish xususiyatlariga qo'riqlash, boqish va ov qilish, shuningdek, gipersotsial xatti-harakatlar, dadillik va tajovuzkorlik kabi shaxsiy xususiyatlar kiradi. Ko'pgina nasllar so'nggi 200 yil ichida oz sonli asoschilaridan olingan. Natijada, bugungi kunda itlar eng ko'p tarqalgan yirtqich hayvon turlari bo'lib, butun dunyoga tarqalib ketgan.[57] Ushbu tarqoqlikning eng yorqin namunasi - bu Evropa naslining ko'plab zamonaviy nasllari Viktoriya davri.[4]

Adabiyotlar

  1. ^ a b v d e f g h men j k l m n o p q Talmann, Olaf; Perri, Angela R. (2018). "Itlarni xonakilashtirishning paleogenomik xulosalari". Lindqvistda C.; Rajora, O. (tahr.). Paleogenomika. Populyatsiya genomikasi. Springer, Xam. 273–306 betlar. doi:10.1007/13836_2018_27. ISBN  978-3-030-04752-8.
  2. ^ a b v d e f g h men j k l Larson, G.; Bredli, D.G. (2014). "It yillarida bu qancha? Itlar populyatsiyasi genomikasining paydo bo'lishi". PLOS Genetika. 10 (1): e1004093. doi:10.1371 / journal.pgen.1004093. PMC  3894154. PMID  24453989.
  3. ^ a b v d e f g h men j k l m Fridman, Adam H; Ueyn, Robert K (2017). "Itlarning kelib chiqishini aniqlash: Qoldiqlardan Genomgacha". Hayvonlarning biologik fanlarini yillik sharhi. 5 (1): 281–307. doi:10.1146 / annurev-animal-022114-110937. PMID  27912242.
  4. ^ a b v d e f g h Frants, Loran A. F.; Bredli, Daniel G.; Larson, Greger; Orlando, Lyudovich (2020). "Qadimgi genomika davrida hayvonlarni xonakilashtirish". Genetika haqidagi sharhlar. 21 (8): 449–460. doi:10.1038 / s41576-020-0225-0. PMID  32265525. S2CID  214809393.
  5. ^ Lord, Ketrin A .; Larson, Greger; Copperer, Raymond P.; Karlsson, Elinor K. (2020). "Ferma tulkilarining tarixi hayvonlarni xonakilashtirish sindromini buzadi". Ekologiya va evolyutsiya tendentsiyalari. 35 (2): 125–136. doi:10.1016 / j.tree.2019.10.011. PMID  31810775.
  6. ^ a b v d e f g Irving-Piz, Evan K.; Rayan, Xanna; Jeymison, Aleksandra; Dimopulos, Evangelos A.; Larson, Greger; Frants, Loran A. F. (2018). "Hayvonlarni xonakilashtirishning paleogenomikasi". Lindqvistda C.; Rajora, O. (tahr.). Paleogenomika. Populyatsiya genomikasi. Springer, Xam. 225-272 betlar. doi:10.1007/13836_2018_55. ISBN  978-3-030-04752-8.
  7. ^ a b v d e Machugh, David E.; Larson, Greger; Orlando, Lyudovich (2016). "O'tmishni tamirlash: qadimgi DNK va hayvonlarni yo'q qilishni o'rganish". Hayvonlarning biologik fanlarini yillik sharhi. 5: 329–351. doi:10.1146 / annurev-animal-022516-022747. PMID  27813680.
  8. ^ a b v d e f g h men j k l Bergstrem, Anders; Frants, Loran; Shmidt, Rayan; Ersmark, Erik; Lebrasyor, Ofeli; Girdland-Flink, Linus; Lin, Audrey T.; Stora, yanvar; Syogren, Karl-Go'ran; Entoni, Devid; Antipina, Ekaterina; Amiri, Sarieh; Bar-Oz, Yigit; Bazaliiskii, Vladimir I.; Bulatovich, Jelena; Jigarrang, Dorkas; Karmagnini, Alberto; Devi, Tom; Fedorov, Sergey; Fiore, Ivana; Fulton, Deyr; Germonpré, Mietje; Xeyl, Jeyms; Irving-Piz, Evan K.; Jeymison, Aleksandra; Yansens, Lyuk; Kirillova, Irina; Xorvits, Liora Kolska; Kuzmanovich-Tsvetkovich, Xulka; Kuzmin, Yaroslav; Losey, Robert J.; Dizdar, Dariya Loznjak; Mashkur, Marjan; Novak, Mario; Onar, Vedat; Orton, Devid; Pasarix, Maja; Radivojevich, Miljana; Rajkovich, Dragana; Roberts, Benjamin; Rayan, Xanna; Sablin, Mixail; Shidlovskiy, Fedor; Stojanovich, Ivana; Tagliacozzo, Antonio; Trantalidu, Katerina; Ullen, Inga; Villaluenga, Aritsa; Vapnish, Paula; Dobni, Keyt; Goterheröm, Anders; Linderxolm, Anna; Dalen, Sevgi; Pinxasi, Ron; Larson, Greger; Skoglund, Pontus (2020). "Tarixdan oldingi itlarning kelib chiqishi va genetik merosi". Ilm-fan. 370 (6516): 557–564. doi:10.1126 / science.aba9572. PMID  33122379. S2CID  225956269.
  9. ^ a b R.M. Nowak (2003). "9-bob - Bo'ri evolyutsiyasi va taksonomiyasi". Mexda L. Devid; Boitani, Luigi (tahr.). Bo'rilar: o'zini tutish, ekologiya va tabiatni muhofaza qilish. Chikago universiteti matbuoti. 239-258 betlar. ISBN  978-0-226-51696-7. 239 bet
  10. ^ a b Pierotti & Fogg 2017, 5-6 bet
  11. ^ a b Derr 2011 yil, 40-bet
  12. ^ Kuper, A. (2015). "Keskin isish hodisalari kech pleystotsen holarktikasi megafaunal aylanmasini rag'batlantirdi". Ilm-fan. 349 (6248): 602–6. Bibcode:2015Sci ... 349..602C. doi:10.1126 / science.aac4315. PMID  26250679. S2CID  31686497.
  13. ^ Loog, Liisa; Talmann, Olaf; Sinding, Mikkel, Xolger S.; Schuememann, Verena J.; Perri, Anjela; Germonpré, Mietje; Bocherens, Herve; Witt, Kelsi E.; Samaniego Kastruta, Xose A.; Velasko, Marsela S.; Lundstrom, Inge K.C.; Uels, Natan; Sonet, Gontran; Frants, Loran; Shreder, Xann; Budd, Jeyn; Ximenes, Elodi, Laure; Fedorov, Sergey; Gasparyan, Boris; Kandel, Endryu V.; Lasničková ‐ Galetova, Martina; Napierala, Xann; Uerpmann, Xans Piter; Nikolskiy, Pavel A.; Pavlova, Elena Y.; Pitulko, Vladimir V.; Xertsig, Karl Xeynts; Malhi, Ripan S.; Willerslev, Eske; va boshq. (2019). "Qadimgi DNK zamonaviy bo'rilar o'zlarining kelib chiqishlarini Beringiyadan pleystotsenning kengayishi bilan izohlashadi". Molekulyar ekologiya. 29 (9): 1596–1610. doi:10.1111 / mec.15329. PMC  7317801. PMID  31840921.
  14. ^ Verxen, Jeraldin; Senn, Xelen; G'azzoliy, Muhammad; Karmacharyo, Dibesh; Sherchan, Adarsh ​​Man; Joshi, Djoti; Kusi, Naresh; Lopes-Bao, Xose Vinsente; Rozen, Tanya; Kachel, Shennon; Sillero-Zubiri, Klaudio; Makdonald, Devid V. (2018). "Himoloy bo'rining yuqori balandliklarga noyob genetik moslashuvi va tabiatni muhofaza qilish uchun oqibatlari". Global ekologiya va tabiatni muhofaza qilish. 16: e00455. doi:10.1016 / j.gecco.2018.e00455.
  15. ^ a b v Shvaytser, Rena M.; Ueyn, Robert K. (2020). "Bo'ri tarixi sirlarini yorituvchi". Molekulyar ekologiya. 29 (9): 1589–1591. doi:10.1111 / MEC.15438. PMID  32286714.
  16. ^ Morey, Darsi F.; Jeger, Rujana (2016). "Bo'ridan itga: Pleistosenning so'nggi ekologik dinamikasi, o'zgargan trofik strategiyalar va inson tushunchalarini o'zgartirish". Tarixiy biologiya. 29 (7): 895–903. doi:10.1080/08912963.2016.1262854. S2CID  90588969.
  17. ^ Morrell, Virjiniya (2015). "Ch2.1-Bo'ri itdan". Bizning g'azablangan do'stlarimiz: uy hayvonlari haqidagi fan. Ilmiy Amerika. 44-46 betlar. ISBN  978-1-4668-5901-2.
  18. ^ a b v Botigué, Laura R.; Qo'shiq, Shiya; Scheu, Amelie; Gopalan, Shyamalika; Pendlton, Amanda L.; Oetjens, Metyu; Taravella, Angela M.; Seregli, Timo; Zeb-Lanz, Andrea; Arbogast, Rouz-Mari; Bobo, dekan; Deyli, Kevin; Unterländer, Martina; Burger, Yoaxim; Kidd, Jeffri M.; Veeramah, Krishna R. (2017). "Qadimgi Evropa itlarining genomlari erta neolit ​​davridan beri davomiylikni ochib beradi". Tabiat aloqalari. 8: 16082. Bibcode:2017 NatCo ... 816082B. doi:10.1038 / ncomms16082. PMC  5520058. PMID  28719574.
  19. ^ a b v d e f g Frants, L. A. F.; Mullin, V. E .; Pionnier-Kapitan, M.; Lebrasör, O .; Ollivye, M .; Perri, A .; Linderxolm, A .; Mattiangeli, V .; Teasdeyl, M. D .; Dimopulos, E. A .; Tresset, A .; Duffraisse, M.; Makkormik, F.; Bartosevich, L .; Gal, E .; Nyerges, E. A .; Sablin, M. V .; Brexard, S .; Mashkur, M .; b l Esku, A.; Jillet, B.; Xyuz, S .; Chassaing, O .; Xitte, C .; Vigne, J.-D .; Dobni, K .; Xanni, C .; Bredli, D. G.; Larson, G. (2016). "Genomik va arxeologik dalillar uy itlarining ikki tomonlama kelib chiqishini ko'rsatmoqda". Ilm-fan. 352 (6290): 1228–31. Bibcode:2016Sci ... 352.1228F. doi:10.1126 / science.aaf3161. PMID  27257259. S2CID  206647686.
  20. ^ Shleydt, Volfgang M.; Shalter, Maykl D. (2018). "Itlar va insoniyat: koevolyutsiya harakatda - yangilanish". Inson etologiyasi byulleteni. 33: 15–38. doi:10.22330 / heb / 331 / 015-038.
  21. ^ Savolainen, P. (2002). "Uy itlarining Sharqiy Osiyo kelib chiqishi to'g'risida genetik dalillar". Ilm-fan. 298 (5598): 1610–3. Bibcode:2002 yil ... 298.1610S. doi:10.1126 / science.1073906. PMID  12446907. S2CID  32583311.
  22. ^ Pang, J. (2009). "mtDNA ma'lumotlari Yantszi daryosining janubida, 16 300 yil oldin, ko'plab bo'rilarning kelib chiqishi haqida ma'lumot beradi". Molekulyar biologiya va evolyutsiya. 26 (12): 2849–64. doi:10.1093 / molbev / msp195. PMC  2775109. PMID  19723671.
  23. ^ a b v Ardalan, A (2011). "Janubi-g'arbiy osiyolik itlar orasida mtDNKni har tomonlama o'rganish bo'rining mustaqil uyga kelishiga ziddir, ammo it-bo'rini duragaylashni nazarda tutadi". Ekologiya va evolyutsiya. 1 (3): 373–385. doi:10.1002 / ece3.35. PMC  3287314. PMID  22393507.
  24. ^ a b Braun, Sara K.; Pedersen, Nil S.; Jafarishorijeh, Sardar; Bannasch, Danika L.; Arrens, Kristen D.; Vu, Juy-Te; Okon, Michaella; Sacks, Benjamin N. (2011). "Yaqin Sharq va Janubi-Sharqiy Osiyo qishloqlarining filogenetik o'ziga xosligi va xromosomalari itlarning kelib chiqishini yoritadi".. PLOS ONE. 6 (12): e28496. Bibcode:2011PLoSO ... 628496B. doi:10.1371 / journal.pone.0028496. PMC  3237445. PMID  22194840.
  25. ^ Ding, Z. (2011). "Janubiy Sharqiy Osiyoda uy itining kelib chiqishi Y-xromosoma DNK tahlillari bilan tasdiqlangan". Irsiyat. 108 (5): 507–14. doi:10.1038 / hdy.2011.114 yil. PMC  3330686. PMID  22108628.
  26. ^ a b v d Vang, Guo-Dong; Chay, Veyvey; Yang, Xe-Chuan; Vang, Lu; Zhong, Li; Lyu, Yan-Xu; Fan, Ruo-Xi; Yin, Ting-Ting; Chju, Chun-Ling; Poyarkov, Andrey D.; Irvin, Devid M.; Xitönen, Marjo K.; Lohi, Xann; Vu, Chung-I; Savolainen, Piter; Chjan, Ya-Ping (2016). "Janubiy Sharqiy Osiyodan: butun dunyo bo'ylab uy itlarining tabiiy tarixi". Hujayra tadqiqotlari. 26 (1): 21–33. doi:10.1038 / cr.2015.147. PMC  4816135. PMID  26667385.
  27. ^ Boyko, A. (2009). "Afrikalik qishloq itlarida populyatsiyaning murakkab tuzilishi va uning itlarni xonakilashtirish tarixidagi xulosalari". Milliy fanlar akademiyasi materiallari. 106 (33): 13903–13908. Bibcode:2009PNAS..10613903B. doi:10.1073 / pnas.0902129106. PMC  2728993. PMID  19666600.
  28. ^ a b v d e Larson G (2012). "Genetika, arxeologiya va biogeografiyani integratsiyalashgan holda itlarni xonakilashtirishni qayta ko'rib chiqish". PNAS. 109 (23): 8878–8883. Bibcode:2012PNAS..109.8878L. doi:10.1073 / pnas.1203005109. PMC  3384140. PMID  22615366.
  29. ^ a b vonHoldt, B. (2010). "Genom miqyosidagi SNP va haplotip tahlillari itlarni xonakilashtirishga asoslangan boy tarixni ochib beradi". Tabiat. 464 (7290): 898–902. Bibcode:2010 yil natur.464..898V. doi:10.1038 / nature08837. PMC  3494089. PMID  20237475.
  30. ^ Fridman, A. (2014). "Genom ketma-ketligi itlarning dinamik tarixini ta'kidlaydi". PLOS Genetika. 10 (1): e1004016. doi:10.1371 / journal.pgen.1004016. PMC  3894170. PMID  24453982.
  31. ^ Ueyn, Robert K.; Vonxoldt, Bridgett M. (2012). "Itlarni xonakilashtirish evolyutsion genomikasi". Sutemizuvchilar genomi. 23 (1–2): 3–18. doi:10.1007 / s00335-011-9386-7. PMID  22270221. S2CID  16003335.
  32. ^ a b v d e f Shannon, Laura M.; Boyko, Rayan X.; Kastelhano, Marta; Kori, Yelizaveta; Xeyvord, Jessika J.; Maklin, Korin; Oq, Mishel E .; Abi Said, Mounir; Anita, Baddli A .; Bondjengo, Nono Ikombe; Kalero, Xorxe; Galov, Ana; Xedimbi, Marius; Imom, Bulu; Xalap, Rajashri; Lali, Duglas; Masta, Endryu; Oliveira, Kayl S.; Peres, Lucia; Randall, Yuliya; Tam, Nguyen Minx; Trujillo-Kornexo, Fransisko J.; Valeriano, Karlos; Satter, Natan B.; Todxunter, Rori J.; Bustamante, Karlos D.; Boyko, Adam R. (2015). "Qishloq itlaridagi genetik tuzilish Markaziy Osiyodagi uy sharoitiga keltirishni aniqlaydi". Milliy fanlar akademiyasi materiallari. 112 (44): 13639–13644. Bibcode:2015PNAS..11213639S. doi:10.1073 / pnas.1516215112. PMC  4640804. PMID  26483491.
  33. ^ Vang, Guo-Dong; Peng, Min-Sheng; Yang, Xe-Chuan; Savolainen, Piter; Chjan, Ya-Ping (2016). "Itlarning Markaziy Osiyoda xonakilashtirilganligi to'g'risida dalillarni so'roq qilish". Milliy fanlar akademiyasi materiallari. 113 (19): E2554-E2555. Bibcode:2016PNAS..113E2554W. doi:10.1073 / pnas.1600225113. PMC  4868457. PMID  27099289.
  34. ^ Shannon, Laura M.; Boyko, Rayan X.; Kastelhano, Marta; Kori, Yelizaveta; Xeyvord, Jessika J.; Maklin, Korin; Oq, Mishel E .; Abi Said, Mounir R.; Anita, Baddli A.; Bondjengo, Nono Ikombe; Kalero, Xorxe; Galov, Ana; Xedimbi, Marius; Imom, Bulu; Xalap, Rajashri; Lali, Duglas; Masta, Endryu; Oliveira, Kayl S.; Peres, Lucia; Randall, Yuliya; Tam, Nguyen Minx; Trujillo-Kornexo, Fransisko J.; Valeriano, Karlos; Satter, Natan B.; Todxunter, Rori J.; Bustamante, Karlos D.; Boyko, Adam R. (2016). "Vang va boshqalarga javob. Ma'lumotlar ketma-ketligi O'rta Osiyoda itlarning uyga kelishini rad etmaydi". Milliy fanlar akademiyasi materiallari. 113 (19): E2556-E2557. Bibcode:2016PNAS..113E2556S. doi:10.1073 / pnas.1600618113. PMC  4868464. PMID  27099288.
  35. ^ Drujkova, Anna S.; Talmann, Olaf; Trifonov, Vladimir A.; Leonard, Jennifer A.; Vorobieva, Nadejda V.; Ovodov, Nikolay D .; Graphodatskiy, Aleksandr S.; Ueyn, Robert K. (2013). "Qadimgi DNK tahlili Kanidni Oltoydan ibtidoiy it sifatida tasdiqlaydi". PLOS ONE. 8 (3): e57754. Bibcode:2013PLoSO ... 857754D. doi:10.1371 / journal.pone.0057754. PMC  3590291. PMID  23483925.
  36. ^ a b v d e f g h men j Talmann, O; Shapiro, B; Cui, P; Shuenemann, V. J; Soyer, S. K; Grinfild, D. L; Germonpre, M. B; Sablin, M. V; Lopez-Jiraldez, F; Domingo-Rura, X; Napierala, H; Uerpmann, H.-P; Loponte, D. M; Akosta, A. A; Giemsch, L; Shmitz, R. V; Vortington, B; Buikstra, J. E; Drujkova, A; Graphodatskiy, A. S; Ovodov, N. D; Uolberg, N; Fridman, A. H; Shvaytser, R. M; Koepfli, K.- P; Leonard, J. A; Meyer, M; Krauz, J; Paabo, S; va boshq. (2013). "Qadimgi kanidlarning to'liq mitoxondriyal genomlari uy itlarining evropalik kelib chiqishini taklif qiladi". Ilm-fan. 342 (6160): 871–4. Bibcode:2013 yil ... 342..871T. doi:10.1126 / science.1243650. hdl:10261/88173. PMID  24233726. S2CID  1526260.
  37. ^ a b v Vila, C. (1997). "Uy itining ko'p va qadimiy kelib chiqishi". Ilm-fan. 276 (5319): 1687–9. doi:10.1126 / science.276.5319.1687. PMID  9180076.
  38. ^ Byornerfeldt, S (2006). "Uyga kelgandan keyin it mitoxondrial DNKdagi selektiv cheklovni yumshatish". Genom tadqiqotlari. 16 (8): 990–994. doi:10.1101 / gr.5117706. PMC  1524871. PMID  16809672.
  39. ^ a b Miklosi, Adam (2018). "1-evolyutsiya va ekologiya". It: tabiiy tarix. Prinston universiteti matbuoti. 13-39 betlar. ISBN  978-0-691-17693-2.
  40. ^ a b Shipman 2015, 149-bet
  41. ^ a b v Frants, L. (2015). "Evroosiyo yovvoyi va uy cho'chqalari genomlarini tahlil qilish natijasida domestikatsiya paytida uzoq muddatli genlar oqimi va seleksiyasining dalillari". Tabiat genetikasi. 47 (10): 1141–1148. doi:10.1038 / ng.3394. PMID  26323058. S2CID  205350534.
  42. ^ Shnitsler, Annik; Patou-Mathis, Merilen (2017). "Bo'ri (Canis lupus Linnaeus, 1758) xonakilashtirish: nega bu qadar kech va juda katta kenglikda sodir bo'ldi? Gipoteza". Antropozoologica. 52 (2): 149. doi:10.5252 / az2017n2a1. S2CID  134153466.
  43. ^ Tsukani, Marta Mariya; Palumbo, Davide; Galaverni, Marko; Serventi, Patriziya; Fabbri, Elena; Ravegnini, Gloriya; Anjelini, Sabrina; Maini, Elena; Persiko, Davide; Kanigliya, Romolo; Cilli, Elisabetta (2019). "Qadimgi yovvoyi bo'rilar: Qadimgi DNK tadqiqotlari so'nggi pleystotsen va xolotsen italyan qoldiqlarida populyatsiya dinamikasini ochib beradi". PeerJ. 7: e6424. doi:10.7717 / peerj.6424. PMC  6441319. PMID  30944772.
  44. ^ Boschin, Franchesko; Bernardini, Federiko; Pilli, Elena; Vay, Stefaniya; Zanolli, Klement; Tagliacozzo, Antonio; Fiko, Rosario; Fedi, Mariyaelena; Corny, Julien; Dreossi, Diego; Lari, Martina; Modi, Alessandra; Vergata, Chiara; Tunis, Klaudio; Moroni, Adriana; Boscato, Paolo; Karamelli, Devid; Ronchitelli, Annamariya (2020). "Italiyada kech pleystotsen itlari uchun birinchi dalil". Ilmiy ma'ruzalar. 10 (1): 13313. Bibcode:2020 yil NatSR..1013313B. doi:10.1038 / s41598-020-69940-w. PMC  7414845. PMID  32770100. S2CID  221019303.
  45. ^ a b Lee, E. (2015). "Sibir Arktikasidan eng qadimgi kanid turlarining qadimgi DNK tahlili va uy itiga genetik hissa qo'shish". PLOS ONE. 10 (5): e0125759. Bibcode:2015PLoSO..1025759L. doi:10.1371 / journal.pone.0125759. PMC  4446326. PMID  26018528.
  46. ^ Irizarri, Kristofer J. L.; Vasconcelos, Elton J. R. (2018). "Kognitiv, ijtimoiy, xulq-atvori va kasallik belgilari kontekstida itlarni populyatsiyalashtirish genomikasi va itlarning naslchilik rivojlanishi". Rajorada O. (tahrir). Populyatsiya genomikasi. 755-806 betlar. doi:10.1007/13836_2018_43. ISBN  978-3-030-04587-6.
  47. ^ Leonard, J. A .; Ueyn, R. K .; Wheeler, J; Valadez, R; Gilyen, S; Vila, C (2002). "Yangi dunyo itlarining qadimgi dunyo kelib chiqishi to'g'risida qadimiy DNK dalillari". Ilm-fan. 298 (5598): 1613–6. Bibcode:2002 yil ... 298.1613L. doi:10.1126 / science.1076980. PMID  12446908. S2CID  37190220.
  48. ^ Fridman, Adam H.; Lohmueller, Kirk E.; Ueyn, Robert K. (2016). "Evolyutsion tarix, selektiv supurish va itdagi zararli o'zgarish". Ekologiya, evolyutsiya va sistematikaning yillik sharhi. 47: 73–96. doi:10.1146 / annurev-ecolsys-121415-032155.
  49. ^ Malmstrem, Elena; Vila, Karles; Gilbert, M; Stora, yanvar; Willerslev, Eske; Xolmund, Gunilya; Göterström, Anders (2008). "Noto'g'ri daraxtni bo'g'ish: zamonaviy shimoliy evropalik itlar ularning kelib chiqishini tushuntirishga qodir emas". BMC evolyutsion biologiyasi. 8: 71. doi:10.1186/1471-2148-8-71. PMC  2288593. PMID  18307773.
  50. ^ von Xoldt, Bridjet M.; Driskoll, Karlos A. (2016). "3-itning kelib chiqishi: itni xonakilashtirish bo'yicha genetik tushunchalar". Jeyms Serpellda (tahrir). Uy iti: uning rivojlanishi, o'zini tutishi va odamlar bilan o'zaro aloqasi (2 nashr). Kembrij universiteti matbuoti. 22-41 betlar. ISBN  978-1-107-02414-4.
  51. ^ Melissa Chan (2016). Insoniyatning itlarga bo'lgan muhabbati ortidagi sirli tarix (Greger Larson bilan intervyu). Vaqt.
  52. ^ Ollivye, Morgan; Tresset, Anne; Frants, Loran A. F.; Brehard, Stefani; Băleshesu, Adrian; Mashkur, Marjan; Boroneanţ, Adina; Pionnier-Kapitan, Mod; Lebrasseur, Ophelie; Arbogast, Rouz-Mari; Bartosevich, Laslo; Deby, Karyne; Rabinovich, Rivka; Sablin, Mixail V.; Larson, Greger; Hanni, Ketrin; Xit, Kristof; Vigne, Jan-Denis (2018). "Neolit ​​davrida Evropaga kengayish paytida itlar odamlarga hamroh bo'lgan". Biologiya xatlari. 14 (10): 20180286. doi:10.1098 / rsbl.2018.0286. PMC  6227856. PMID  30333260.
  53. ^ Oetjens, Metyu T.; Martin, Aksel; Veeramah, Krishna R.; Kidd, Jeffri M. (2018). "Qisqa o'qilgan ketma-ketlik ma'lumotlari yordamida kanid Y-xromosoma filogeniyasini tahlil qilish neolit ​​davri evropalik itlar orasida alohida haplogruplar mavjudligini aniqlaydi". BMC Genomics. 19 (1): 350. doi:10.1186 / s12864-018-4749-z. PMC  5946424. PMID  29747566.
  54. ^ Irving-Piz, Evan K; Frants, Loran A.F; Sayks, Naomi; Kallou, Sesil; Larson, Greger (2018). "Quyonlar va mahalliylashtirishning o'ziga xos kelib chiqishi". Ekologiya va evolyutsiya tendentsiyalari. 33 (3): 149–152. doi:10.1016 / j.tree.2017.12.009. PMID  29454669.
  55. ^ Ed Yong (2016). "Itlar uchun yangi kelib chiqish tarixi - Greger Larson bilan intervyu". Atlantika oylik guruhi.
  56. ^ Grimm, Devid (2015). "Xususiyat: itlarni xonakilashtirish sirini hal qilish". Ilm-fan. doi:10.1126 / science.aab2477. Greger Larsonning so'zlarini keltiradi
  57. ^ a b v d e Ostrander, Elaine A .; Vang, Guo-Dong; Larson, Greger; Vonxoldt, Bridjet M.; Devis, Brayan V.; Jagannatan, Vidixa; Xit, Kristof; Ueyn, Robert K.; Chjan, Ya-Ping (2019). "Dog10K: itlarni xonakilashtirish, fenotiplar va sog'liqni saqlash bo'yicha tadqiqotlar olib borish uchun xalqaro ketma-ketlik harakatlari". Milliy ilmiy sharh. 6 (4): 810–824. doi:10.1093 / nsr / nwz049. PMC  6776107. PMID  31598383.
  58. ^ Zalloua, Pyer A.; Matisoo-Smit, Yelizaveta (2017 yil 6-yanvar). "Muzlikdan keyingi kengayishlarni xaritalash: Janubi-g'arbiy Osiyodagi populyatsiya". Ilmiy ma'ruzalar. 7: 40338. Bibcode:2017 yil NatSR ... 740338P. doi:10.1038 / srep40338. ISSN  2045-2322. PMC  5216412. PMID  28059138.
  59. ^ Makgugo, Gillian P. Dover, Maykl J.; Machugh, David E. (2019). "Qadimgi DNK va paleogenomika yordamida uy hayvonlarining kelib chiqishi va biologiyasini ochish". BMC biologiyasi. 17 (1): 98. doi:10.1186 / s12915-019-0724-7. PMC  6889691. PMID  31791340.
  60. ^ Duleba, Anna; Skoniecna, Katarzina; Bogdanovich, Vislov; Malyarchuk, Boris; Grzybowski, Tomasz (2015). "To'liq mitokondriyal genom ma'lumotlar bazasi va Canis lupus tanishis uchun standartlashtirilgan tasniflash tizimi". Xalqaro sud ekspertizasi: Genetika. 19: 123–129. doi:10.1016 / j.fsigen.2015.06.014. PMID  26218982.
  61. ^ a b Pierotti & Fogg 2017, 192-193 betlar
  62. ^ Jans, N. (2014). Romeo degan bo'ri. Houghton Mifflin Harcourt. ISBN  978-0547858197.
  63. ^ Derr 2011 yil, 85-98 betlar
  64. ^ Vang, Xiaoming; Tedford, Richard X.; Itlar: ularning fotoalbom qarindoshlari va evolyutsion tarixi. Nyu-York: Columbia University Press, 2008. 166-bet
  65. ^ a b v d e f g h men Schleidt, W. (2003). "Odamlar va kanidlarning birgalikdagi evolyutsiyasi: itlarni xonakilashtirishning muqobil ko'rinishi: Homo homini lupus?" (PDF). Evolyutsiya va idrok. 9 (1): 57–72.
  66. ^ a b Frans de Vaal (2006). Primatlar va faylasuflar: axloq qanday rivojlangan. Prinston universiteti matbuoti. p.3.
  67. ^ Olsen, S. J. (1985). Uy itining kelib chiqishi: tosh qoldiqlari. Univ. Arizona Press, Tuson, AQSh. 88-89 betlar.
  68. ^ a b v d e Zeder MA (2012). "Hayvonlarni xonakilashtirish". Antropologik tadqiqotlar jurnali. 68 (2): 161–190. doi:10.3998 / jar.0521004.0068.201. S2CID  85348232.
  69. ^ a b v Lyudmila N. Trut (1999). "Erta kanidni xonakilashtirish: Farm-Fox tajribasi" (PDF). Amerikalik olim. 87 (Mart-aprel): 160–169. Bibcode:1999AmSci..87 ..... T. doi:10.1511/1999.2.160. Arxivlandi asl nusxasi (PDF) 2010 yil 15 fevralda. Olingan 12 yanvar, 2016.
  70. ^ Morey Darcy F (1992). "Uy iti evolyutsiyasining kattaligi, shakli va rivojlanishi". Arxeologiya fanlari jurnali. 19 (2): 181–204. doi:10.1016/0305-4403(92)90049-9.
  71. ^ Turnbull Priskilla F.; Rid Charlz A. (1974). "Palegawra g'orining pleistosen terminalidan fauna". Fieldiana: Antropologiya. 63: 81–146.
  72. ^ Musiani M, Leonard JA, Kluff H, Geyts CC, Mariani S va boshq. (2007). "Tundra / tayga va boreal ignabargli o'rmon bo'rilarini farqlash: genetikasi, ko'ylagi rangi va ko'chib yuruvchi karibu bilan bog'liqligi". Mol. Ekol. 16 (19): 4149–70. doi:10.1111 / j.1365-294x.2007.03458.x. PMID  17725575. S2CID  14459019.
  73. ^ Leonard, J. (2007). "Megafaunalning yo'q bo'lib ketishi va ixtisoslashgan bo'ri ekomorfining yo'q bo'lib ketishi". Hozirgi biologiya. 17 (13): 1146–50. doi:10.1016 / j.cub.2007.05.072. hdl:10261/61282. PMID  17583509. S2CID  14039133.
  74. ^ Wolpert, S. (2013), "Itlar Evropada 18000 yildan ko'proq vaqt oldin paydo bo'lgan bo'lishi mumkin, deb xabar beradi UCLA biologlari", UCLA yangiliklar xonasi, olingan 10 dekabr, 2014
  75. ^ Arktik bo'ri: Yuqori Arktika Laura DeLallo tomonidan. Bearport Publishing, Nyu-York, 2011 yil
  76. ^ Isitish dunyosida Arktika yovvoyi tabiati Maykl Beker tomonidan. BBC Ikki, 2014 yil.
  77. ^ Ellesmere Island Journal & Field Notes Genri Beston tomonidan 2006. Xalqaro bo'rilar markazi.
  78. ^ Arktik bo'rilar va ularning o'ljasi L. Devid Mech tomonidan. Milliy okean va atmosfera boshqarmasi, Tinch okeanidagi dengiz muhiti laboratoriyasi, Aktiv zonasi. 2004 yil
  79. ^ Shvaytser, Rena M; Durvasula, Arun; Smit, Joel; Vor, Samuel H; Stler, Daniel R; Galaverni, Marko; Talmann, Olaf; Smit, Duglas V; Randi, Ettore; Ostrander, Eleyn A; Yashil, Richard E; Lohmueller, Kirk E; Novembre, Jon; Ueyn, Robert K (2018). "Shimoliy Amerika kul bo'rilarida melanistik allelning tabiiy tanlanishi va kelib chiqishi". Molekulyar biologiya va evolyutsiya. 35 (5): 1190–1209. doi:10.1093 / molbev / msy031. PMC  6455901. PMID  29688543.
  80. ^ Frants, Loran A. F.; Larson, Greger (2018). "1. Domestikatsiya davomiyligining genetik nuqtai nazari". Stefanoffda Charlz; Vigne, Jan-Denis (tahrir). Gibrid jamoalar: uy sharoitida biososial yondashuvlar va boshqa trans-turlar munosabatlari (1 nashr). Teylor va Frensis. 23-38 betlar. ISBN  9781351717984.
  81. ^ Uchuvchi, Malgorzata; Greko, Klaudiya; Vonxoldt, Bridjet M; Randi, Ettore; Jdrzejewski, Wlodzimeerz; Sidorovich, Vadim E; Konopinskiy, Masij K; Ostrander, Eleyn A; Ueyn, Robert K (2018). "Widespread, long-term admixture between grey wolves and domestic dogs across Eurasia and its implications for the conservation status of hybrids". Evolyutsion dasturlar. 11 (5): 662–680. doi:10.1111/eva.12595. PMC  5978975. PMID  29875809.
  82. ^ Darvin, Charlz (1868). "Chapter 1: Domestic Dogs and Cats". Domestikatsiya sharoitida hayvon va o'simliklarning xilma-xilligi. Vol. 1. John Murray, London.
  83. ^ Larson, G.; Piperno, D. R.; Allaby, R. G.; Purugganan, M. D .; Andersson, L .; Arroyo-Kalin, M.; Barton, L.; Climer Vigueira, C.; Denham, T.; Dobni, K .; Doust, A. N.; Gepts, P.; Gilbert, M. T. P.; Gremillion, K. J .; Lucas, L.; Lukens, L.; Marshall, F. B.; Olsen, K. M.; Pires, J. C.; Richerson, P. J.; Rubio De Casas, R.; Sanjur, O. I.; Thomas, M. G.; Fuller, D. Q. (2014). "Current perspectives and the future of domestication studies". Milliy fanlar akademiyasi materiallari. 111 (17): 6139–6146. Bibcode:2014PNAS..111.6139L. doi:10.1073/pnas.1323964111. PMC  4035915. PMID  24757054.
  84. ^ a b v d e f g Larson, G (April 2013). "A population genetics view of animal domestication" (PDF). Genetika tendentsiyalari. 29 (4): 197–205. doi:10.1016/j.tig.2013.01.003. PMID  23415592.
  85. ^ Trut, L.; va boshq. (2009). "Animal evolution during domestication: the domesticated fox as a model". BioEssays. 31 (3): 349–360. doi:10.1002/bies.200800070. PMC  2763232. PMID  19260016.
  86. ^ Hemmer H (2005). "Neumuhle-Riswicker Hirsche: Erste planma¨ßige Zucht einer neuen Nutztierform". Naturwissenschaftliche Rundschau. 58: 255–261.
  87. ^ Malmkvist, Jen s; Hansen, Steffen W. (2002). "Generalization of fear in farm mink, Mustela vison, genetically selected for behaviour towards humans" (PDF). Hayvonlar harakati. 64 (3): 487–501. doi:10.1006/anbe.2002.3058. S2CID  491466. Arxivlandi asl nusxasi (PDF) 2016-03-05 da. Olingan 2016-01-17.
  88. ^ Jons, R.Brayan; Satterlee, Daniel G.; Marks, Henry L. (1997). "Fear-related behaviour in Japanese quail divergently selected for body weight". Amaliy hayvonlar xulq-atvori. 52 (1–2): 87–98. doi:10.1016/S0168-1591(96)01146-X.
  89. ^ Olsen KM, Wendel JF (2013). "A bountiful harvest: genomic insights into crop domestication phenotypes". Annu. Rev. Plant Biol. 64: 47–70. doi:10.1146/annurev-arplant-050312-120048. PMID  23451788.
  90. ^ a b Doust, A. N.; Lukens, L.; Olsen, K. M.; Mauro-Herrera, M.; Meyer, A.; Rogers, K. (2014). "Beyond the single gene: How epistasis and gene-by-environment effects influence crop domestication". Milliy fanlar akademiyasi materiallari. 111 (17): 6178–6183. Bibcode:2014PNAS..111.6178D. doi:10.1073/pnas.1308940110. PMC  4035984. PMID  24753598.
  91. ^ Meyer, Rachel S.; Purugganan, Michael D. (2013). "Evolution of crop species: Genetics of domestication and diversification". Genetika haqidagi sharhlar. 14 (12): 840–52. doi:10.1038/nrg3605. PMID  24240513. S2CID  529535.
  92. ^ Marsden, Clare D.; Vecchyo, Diego Ortega-Del; O'Brien, Dennis P.; va boshq. (5 January 2016). "Uyda boqish paytida shishalar va selektiv supurish itlarda zararli genetik o'zgarishni kuchaytirdi". Amerika Qo'shma Shtatlari Milliy Fanlar Akademiyasi materiallari. 113 (1): 152–7. Bibcode:2016PNAS..113..152M. doi:10.1073 / pnas.1512501113. PMC  4711842. PMID  26699508.
  93. ^ Boyko, Adam R.; Quignon, Pascale; Li, Lin; Schoenebeck, Jeffrey J.; Degenxardt, Eremiyya D.; Lohmueller, Kirk E.; Zhao, Keyan; Brisbin, Abra; Parker, Xeydi G.; Vonxoldt, Bridjet M.; Cargill, Michele; Auton, Adam; Reynolds, Andy; Elkahloun, Abdel G.; Castelhano, Marta; Mosher, Dana S.; Sutter, Nathan B.; Johnson, Gary S.; Novembre, John; Hubisz, Melissa J.; Siepel, Odam; Ueyn, Robert K.; Bustamante, Carlos D.; Ostrander, Elaine A. (2010). "A Simple Genetic Architecture Underlies Morphological Variation in Dogs". PLOS biologiyasi. 8 (8): e1000451. doi:10.1371/journal.pbio.1000451. PMC  2919785. PMID  20711490. Ushbu maqola ushbu manbadagi matnni o'z ichiga oladi jamoat mulki.
  94. ^ Cieslak, M .; va boshq. (2011). "Colours of domestication". Biol. Vah. 86 (4): 885–899. doi:10.1111/j.1469-185x.2011.00177.x. PMID  21443614. S2CID  24056549.
  95. ^ Ludwig A.; va boshq. (2009). "Coat color variation at the beginning of horse domestication". Ilm-fan. 324 (5926): 485. Bibcode:2009Sci...324..485L. doi:10.1126/science.1172750. PMC  5102060. PMID  19390039.
  96. ^ Fang M.; va boshq. (2009). "Contrasting mode of evolution at a coat color locus in wild and domestic pigs". PLOS Genet. 5 (1): e1000341. doi:10.1371/journal.pgen.1000341. PMC  2613536. PMID  19148282.
  97. ^ Hemmer, H. 1990. Domestication: The decline of environmental appreciation. Cambridge:Cambridge University Press
  98. ^ Pennisi, E. (2015). "The taming of the pig took some wild turns". Ilm-fan. doi:10.1126/science.aad1692.
  99. ^ Li, Y. (2014). "Domestication of the dog from the wolf was promoted by enhanced excitatory synaptic plasticity: A hypothesis". Genom biologiyasi va evolyutsiyasi. 6 (11): 3115–21. doi:10.1093/gbe/evu245. PMC  4255776. PMID  25377939.
  100. ^ a b v Freedman, Adam H.; Shvaytser, Rena M.; Ortega-Del Vecchyo, Diego; Han, Eunjung; Devis, Brayan V.; Gronau, Ilan; Silva, Pedro M.; Galaverni, Marko; Fan, Zhenxin; Marks, Piter; Lorente-Galdos, Belen; Ramirez, Oscar; Hormozdiari, Farhod; Alkan, mumkin; Vila, Karles; Skvayr, Kevin; Geffen, Eli; Kusak, Josip; Boyko, Adam R.; Parker, Xeydi G.; Li, Klarens; Tadigotla, Vasisht; Siepel, Odam; Bustamante, Carlos D.; Xarkins, Timoti T.; Nelson, Stenli F.; Marques-Bonet, Tomas; Ostrander, Elaine A .; Ueyn, Robert K.; Novembre, John (2016). "Demographically-Based Evaluation of Genomic Regions under Selection in Domestic Dogs". PLOS Genetika. 12 (3): e1005851. doi:10.1371/journal.pgen.1005851. PMC  4778760. PMID  26943675.
  101. ^ Shipman, Pat (2015). "How do you kill 86 mammoths? Taphonomic investigations of mammoth megasites". To'rtlamchi xalqaro. 359–360: 38–46. Bibcode:2015QuInt.359...38S. doi:10.1016/j.quaint.2014.04.048.
  102. ^ Zimov, S.A.; Zimov, N.S.; Tikhonov, A.N.; Chapin, F.S. (2012). "Mammoth steppe: A high-productivity phenomenon". To'rtlamchi davrga oid ilmiy sharhlar. 57: 26–45. Bibcode:2012QSRv...57...26Z. doi:10.1016/j.quascirev.2012.10.005.
  103. ^ Serpell J, Duffy D. Dog Breeds and Their Behavior. In: Domestic Dog Cognition and Behavior. Berlin, Heidelberg: Springer; 2014 yil
  104. ^ a b v d e Kagan, Aleks; Blass, Torsten (2016). "Identification of genomic variants putatively targeted by selection during dog domestication". BMC evolyutsion biologiyasi. 16: 10. doi:10.1186/s12862-015-0579-7. PMC  4710014. PMID  26754411.
  105. ^ Almada RC, Coimbra NC. Recruitment of striatonigral disinhibitory and nigrotectal inhibitory GABAergic pathways during the organization of defensive behavior by mice in a dangerous environment with the venomous snake Bothrops alternatus [ Reptilia, Viperidae ] Synapse 2015:n/a–n/a
  106. ^ Coppinger R, Schneider R: Evolution of working dogs. The domestic dog: Its evolution, behaviour and interactions with people. Cambridge: Cambridge University press, 1995
  107. ^ Pendleton, Amanda L.; Shen, Feichen; Taravella, Angela M.; Emery, Sarah; Veeramah, Krishna R.; Boyko, Adam R.; Kidd, Jeffrey M. (2018). "Comparison of village dog and wolf genomes highlights the role of the neural crest in dog domestication". BMC biologiyasi. 16 (1): 64. doi:10.1186/s12915-018-0535-2. PMC  6022502. PMID  29950181.
  108. ^ a b Pörtl, Daniela; Jung, Christoph (2019). "Physiological pathways to rapid prosocial evolution". Biologia Futura. 70 (2): 93–102. doi:10.1556/019.70.2019.12.
  109. ^ Palagi, Elisabetta; Cordoni, Giada (2020). "Intraspecific Motor and Emotional Alignment in Dogs and Wolves: The Basic Building Blocks of Dog–Human Affective Connectedness". Hayvonlar. 10 (2): 241. doi:10.3390/ani10020241. PMC  7070632. PMID  32028648.
  110. ^ Pongrácz, Péter (2019). "The future of biology from a canine perspective". Biologia Futura. 70 (2): 89–92. doi:10.1556/019.70.2019.11.
  111. ^ a b Hare, B. (2013). The Genius of Dogs. Pingvin nashriyoti guruhi.
  112. ^ Hare B. (2005). "Human-like social skills in dogs?". Kognitiv fanlarning tendentsiyalari. 9 (9): 439–44. doi:10.1016/j.tics.2005.07.003. PMID  16061417. S2CID  9311402.
  113. ^ Butterworth, G. (2003). "Belgilash - bu chaqaloqlar uchun tilga olib boradigan shoh yo'l".
  114. ^ Lakatos, G. (2009). "Itlarga nisbatan qiyosiy yondashuv" (Kanis tanish) va inson go'daklari imo-ishoralarning turli shakllarini tushunishi ". Hayvonlarni bilish. 12 (4): 621–31. doi:10.1007 / s10071-009-0221-4. PMID  19343382. S2CID  18078591.
  115. ^ Muller, C. (2015). "Dogs can discriminate the emotional expressions of human faces". Hozirgi biologiya. 25 (5): 601–5. doi:10.1016/j.cub.2014.12.055. PMID  25683806.
  116. ^ Hare, B. (2013). "What Are Dogs Saying When They Bark?". Ilmiy Amerika. Olingan 17 mart 2015.
  117. ^ Sanderson, K. (2008). "Humans can judge a dog by its growl". Tabiat. doi:10.1038 / yangiliklar.2008.852.
  118. ^ Nagasawa, M. (2015). "Oxytocin-gaze positive loop and the coevolution of human-dog bonds". Bibcode:2015Sci...348..333N. doi:10.1126/science.1261022.
  119. ^ a b v Pol Taçon; Pardoe, Colin (2002). "Dogs make us human". Tabiat Avstraliya. Avstraliya muzeyi. 27 (4): 52–61. also available: https://www.researchgate.net/publication/29464691_Dogs_make_us_human
  120. ^ Temple Grandin; Catherine Johnson (2005). Animals in Translation: Using the Mysteries of Autism to Decode Animal Behavior (PDF). A Harvest Book, Harcourt, Inc. New York. p. 305.
  121. ^ a b Kathryn Kirkpatrick (2014). Jeanne Dubino; Ziba Rashidian; Andrew Smyth (eds.). Madaniyatda zamonaviy hayvonning vakili. Palgrave Macmillan New York. p. 75.
  122. ^ Fogg, Brandy R.; Howe, Nimachia; Pierotti, Raymond (2015). "Relationships Between Indigenous American Peoples and Wolves 1: Wolves as Teachers and Guides". Etnobiologiya jurnali. 35 (2): 262–285. doi:10.2993/etbi-35-02-262-285.1. S2CID  86236996.
  123. ^ a b v Schleidt, W. M. (1998). "Is humaneness canine?". Inson etologiyasi byulleteni. 13 (4): 1–4.
  124. ^ Andrew Brown Smith (2005). African Herders: Emergence of Pastoral Traditions. Walnut Creek: Altamira Press. p. 27.
  125. ^ Verworn, M.; Bonnet, R.; Steinmann, G. (1914). "Diluviale Menschenfunde in Obercassel bei Bonn" [Diluvial People found in Obercassel near Bonn]. Naturwissenschaften. 2 (27): 645–650. Bibcode:1914NW......2..645V. doi:10.1007/bf01495289. S2CID  34155217.
  126. ^ Verworn, M., R. Bonnet, G. Steinmann. 1919. Der diluviale Menschenfund von Obercassel bei Bonn. Visbaden. [The diluvial People found in Obercassel near Bonn]
  127. ^ Nobis, G. 1979. Der älteste Haushund lebte vor 14 000 Jahren. Umschau 79 (19): 610.
  128. ^ Nobis, G. 1981. Aus Bonn: Das älteste Haustier des Menschen. Unterkiefer eines Hundes aus dem Magdaleniengrab von Bonn-Oberkassel. Das Rheinische Landesmuseum Bonn: Berichte aus der Arbeit des Museums 4/81: 49–50.
  129. ^ Benecke, Norbert (1987). "Studies on early dog remains from Northern Europe". Arxeologiya fanlari jurnali. 14: 31–49. doi:10.1016/S0305-4403(87)80004-3.
  130. ^ Liane Giemsch, Susanne C. Feine, Kurt W. Alt, Qiaomei Fu, Corina Knipper, Johannes Krause, Sarah Lacy, Olaf Nehlich, Constanze Niess, Svante Pääbo, Alfred Pawlik, Michael P. Richards, Verena Schünemann, Martin Street, Olaf Thalmann, Johann Tinnes, Erik Trinkaus & Ralf W. Schmitz. "Interdisciplinary investigations of the late glacial double burial from Bonn-Oberkassel". Hugo Obermaier Society for Quaternary Research and Archaeology of the Stone Age: 57th Annual Meeting in Heidenheim, 7th – 11th April 2015, 36-37
  131. ^ a b v d e f g Janssens, Luc; Giemsch, Liane; Schmitz, Ralf; Street, Martin; Van Dongen, Stefan; Crombé, Philippe (2018). "Eski itga yangi qarash: Bonn-Oberkassel qayta ko'rib chiqildi". Arxeologiya fanlari jurnali. 92: 126–138. doi:10.1016 / j.jas.2018.01.004. hdl:1854 / LU-8550758.
  132. ^ a b v d e f Street, Martin & Janssens, Luc & Napierala, Hannes. (2015). Street, M., Napierala, H. & Janssens, L. 2015: The late Palaeolithic dog from Bonn-Oberkassel in context. In: The Late Glacial Burial from Oberkassel Revisited (L. Giemsch / R. W. Schmitz eds.), Rheinische Ausgrabungen 72, 253-274. ISBN  978-3-8053-4970-3. Rheinische Ausgrabungen.
  133. ^ Coppinger R; Feinstein M (2015). How Dogs Work. Chikago shtatidagi Press universiteti, Chikago. ISBN  9780226128139.
  134. ^ Davis, S (1982). "The taming of the few". Yangi olim. 95: 697–700.
  135. ^ a b Clutton-Brock, J. 1984. Dog, in I.L. Mason (ed.) Evolution of domesticated animals. London:Longman.
  136. ^ a b v d e f g h men j Perri, Angela R. (2016). "J dogsmon Yaponiyada itlarni ov qilish ekologik moslashuv sifatida". Antik davr. 90 (353): 1166–1180. doi:10.15184/aqy.2016.115.
  137. ^ Gagnin, Mariya; Perri, Angela R.; Petraglia, Michael D. (2018). "Arabistondagi itlar yordamida ov qilish strategiyasining neolitgacha bo'lgan dalillari". Antropologik arxeologiya jurnali. 49: 225–236. doi:10.1016 / j.jaa.2017.10.003.
  138. ^ a b Sinding, Mikkel-Xolger S.; Gopalakrishnan, Shyam; Ramos-Madrigal, Jazmin; De Manuel, Marc; Pitulko, Vladimir V.; Kuderna, Lukas; Fuyerborn, Tatyana R.; Frants, Loran A. F.; Viyera, Filipe G.; Niman, Yonas; Samaniego Kastruta, Xose A.; Karo, nasroniy; Andersen-Ranberg, Emilie U.; Jordan, Peter D.; Pavlova, Elena Y.; Nikolskiy, Pavel A.; Kasparov, Aleksey K.; Ivanova, Varvara V.; Willerslev, Eske; Skoglund, Pontus; Fredxolm, Merete; Wennerberg, Sanne Eline; Xayde-Yorgensen, Mads Piter; Dits, Rune; Sonne, Christian; Meldgaard, Morten; Dalen, Sevgi; Larson, Greger; Petersen, Bent; va boshq. (2020). "Arktikaga moslashgan itlar pleystotsen-golotsen o'tish davrida paydo bo'ldi". Ilm-fan. 368 (6498): 1495–1499. doi:10.1126/science.aaz8599. PMC  7116267. PMID  32587022. S2CID  220072941.
  139. ^ a b Pitulko, Vladimir V.; Kasparov, Aleksey K. (2017). "Sharqiy Sibir Arktikasidagi Erta Golotsen Joxov joyidan arxeologik itlar". Arxeologiya fanlari jurnali: Hisobotlar. 13: 491–515. doi:10.1016 / j.jasrep.2017.04.003.
  140. ^ Perri, Angela; Vidga, Kris; Lawler, Dennis; Martin, Terrance; Loebel, Thomas; Farnsworth, Kenneth; Kohn, Luci; Buenger, Brent (2019). "New Evidence of the Earliest Domestic Dogs in the Americas". Amerika qadimiyligi. 84: 68–87. doi:10.1017/aaq.2018.74.
  141. ^ Ní Leathlobhair, Meyr; Perri, Angela R; Irving-Pease, Evan K; Witt, Kelsey E; Linderxolm, Anna; Haile, James; Lebrasseur, Ophelie; Amin, Karli; Blik, Jefri; Boyko, Adam R; Brace, Selina; Kortes, Yahayra Nunes; Crockford, Susan J; Devo, Alison; Dimopoulos, Evangelos A; Eldrij, Morli; Enk, Jacob; Gopalakrishnan, Shyam; Gori, Kevin; Grimes, Von; Guiry, Erik; Hansen, Anders J; Xulme-Beaman, Ardern; Jonson, Jon; Oshxona, Endryu; Kasparov, Aleksei K; Kvon, Yang-Mi; Nikolskiy, Pavel A; Lope, Karlos Peraza; va boshq. (2018). "Amerikadagi itlarning evolyutsion tarixi". Ilm-fan. 361 (6397): 81–85. Bibcode:2018Sci ... 361 ... 81N. doi:10.1126 / science.aao4776. PMC  7116273. PMID  29976825.
  142. ^ Amin, Karli; Fuyerborn, Tatyana R.; Braun, Sara K.; Linderxolm, Anna; Xulme-Beaman, Ardern; Lebrasseur, Ophelie; Sinding, Mikkel-Xolger S.; Lounsberi, Zakari T.; Lin, Audrey T.; Appelt, Martin; Baxman, Luts; Betts, Metyu; Britton, Keyt; Darvent, Jon; Dits, Rune; Fredxolm, Merete; Gopalakrishnan, Shyam; Goriunova, Olga I.; Gronnov, Byorne; Haile, James; Xalsson, Jon Xolstsaynn; Xarrison, Ramona; Xayde-Yorgensen, Mads Piter; Knecht, Rick; Losey, Robert J.; Masson-Maklin, Eduar; Makgovern, Tomas X.; Makmenus-Fray, Ellen; Meldgaard, Morten; va boshq. (2019). "Shimoliy Amerika Arktikasi bo'ylab Inuit tarqalishiga ixtisoslashgan chana itlari". Qirollik jamiyati materiallari B: Biologiya fanlari. 286 (1916): 20191929. doi:10.1098 / rspb.2019.1929 yil. PMC  6939252. PMID  31771471.
  143. ^ a b v Skoglund, Pontus; Ersmark, Erik; Palkopoulou, Eleftheria; Dalén, Love (2015). "Ancient Wolf Genome Reveals an Early Divergence of Domestic Dog Ancestors and Admixture into High-Latitude Breeds". Hozirgi biologiya. 25 (11): 1515–1519. doi:10.1016/j.cub.2015.04.019. PMID  26004765.
  144. ^ Walker, Bret (2008). The Lost Wolves of Japan. Vashington universiteti universiteti, Sietl. p. 51. ISBN  9780295988146.
  145. ^ Ikeya, K. 1994. Hunting with dogs among the San in the Central Kalahari. African Study Monographs 15:119–34.
  146. ^ Gron, O. & M.G. Turov. 2007. Resource 'pooling' and resource management. An ethno-archaeological study of the Evenk hunter-gatherers, Katanga County, Siberia, in B. Hardh, K. Jennbert & D. Olausson (ed.) On the road: studies in honour of Lars Larsson (Acta Archaeologica Lundensia 26):67–72. Stokgolm: Almqvist & Wiksell.
  147. ^ Koler-Matznick, Janice; Brisbin Jr, I. Lehr; Yates, S; Bulmer, Susan (2007). "The New Guinea singing dog: its status and scientific importance". The Journal of the Australian Mammal Society. 29 (1): 47–56. CiteSeerX  10.1.1.627.5761. doi:10.1071/AM07005.
  148. ^ Olowo Ojoade, J. 1990. Nigerian cultural attitudes to the dog, in R. Willis (ed.) Signifying animals: human meaning in the natural world: 215–21. London: Routledge.
  149. ^ Mizoguchi, K. 2002. An archaeological history of Japan: 10,000 B.C. to A.D. 700. Philadelphia: University of Pennsylvania Press.
  150. ^ Bourque, B.J. 1975. Comments on the late Archaic populations of central Maine: the view from the urner Farm. Arctic Anthropology 12: 35–45.
  151. ^ Larsson, L. 1990. Dogs in fraction—symbols in action, in P.M. Vermeersch & P. Van Peer (ed.) Contributions to the Mesolithic in Europe: 153–60. Leyven: Leyven universiteti matbuoti.
  152. ^ Morey, D.F. (1992). "Early Holocene domestic dog burials from the North American Midwest". Hozirgi antropologiya. 33 (2): 224–29. doi:10.1086/204059. S2CID  144485292.
  153. ^ Gautier, Achilles (2001). "The Early to Late Neolithic Archeofaunas from Nabta and Bir Kiseiba". Holocene Settlement of the Egyptian Sahara. pp. 609–635. doi:10.1007/978-1-4615-0653-9_23. ISBN  978-1-4613-5178-8. refer page 620
  154. ^ Clutton, Juliet; Driscoll, Carlos A. (2016). "1-Origins of the dog:The archaeological evidence". In James Serpell (ed.). Uy iti: uning rivojlanishi, o'zini tutishi va odamlar bilan o'zaro aloqasi (2 nashr). Kembrij universiteti matbuoti. p. 17. ISBN  978-1-107-02414-4.
  155. ^ Zhang, Ming; Sun, Guoping; Ren, Lele; Yuan, Haibing; Dong, Guanghui; Zhang, Lizhao; Lyu, Fen; Cao, Peng; Ko, Albert Min-Shan; Yang, Melinda A.; Hu, Songmei; Vang, Guo-Dong; Fu, Qiaomei (2020). "Ancient DNA evidence from China reveals the expansion of Pacific dogs". Molekulyar biologiya va evolyutsiya. 37 (5): 1462–1469. doi:10.1093/molbev/msz311. PMC  7182212. PMID  31913480.

Bibliografiya

Qo'shimcha o'qish