Yadro xavfsizligi va xavfsizligi - Nuclear safety and security

Olib tashlash uchun ishlaydigan ekipaj radioaktiv ifloslanish keyin Uch Mile orolidagi avariya.

Yadro xavfsizligi bilan belgilanadi Xalqaro atom energiyasi agentligi (IAEA) "tegishli ish sharoitlariga erishish, baxtsiz hodisalarning oldini olish yoki baxtsiz hodisalar oqibatlarini yumshatish, natijada ishchilar, aholi va atrof-muhitni haddan tashqari radiatsiya xavfidan himoya qilish". IAEA belgilaydi yadro xavfsizligi sifatida "Yadro materiallari, boshqa radioaktiv moddalar yoki ular bilan bog'liq bo'lgan ob'ektlar bilan bog'liq noqonuniy yo'llar, noqonuniy yo'llar yoki boshqa zararli xatti-harakatlarning oldini olish va aniqlash, ularga qarshi choralar, o'g'irlik, sabotaj, ruxsatsiz kirish".[1]

Ushbu qoplamalar atom elektr stantsiyalari va boshqa barcha yadroviy inshootlar, yadroviy materiallarni tashish va tibbiy, energetika, sanoat va harbiy maqsadlar uchun yadro materiallaridan foydalanish va saqlash.

Atom energetikasi reaktorlarning xavfsizligini va ishlashini yaxshilab, yangi va xavfsizroq reaktorlarning konstruktsiyalarini taklif qildi. Biroq, mukammal xavfsizlikni kafolatlash mumkin emas. Muammolarning potentsial manbalariga inson xatolari va kutilganidan katta ta'sir ko'rsatadigan tashqi hodisalar kiradi: reaktorlarning dizaynerlari Fukusima Yaponiyada zilzila natijasida yuzaga kelgan tsunami zilziladan keyin reaktorni barqarorlashtirishi kerak bo'lgan zaxira tizimlarini ishdan chiqaradi deb taxmin qilmagan.[2][3][4][5]O'z ichiga olgan halokatli stsenariylar terroristik hujumlar, ichkaridagi sabotaj va kiberhujumlar ham tasavvur qilish mumkin.

Yadro quroli xavfsizlik, shuningdek, yadroviy materiallar bilan bog'liq harbiy tadqiqotlar xavfsizligi, odatda, turli xil sabablarga ko'ra, maxfiylik sababli, fuqarolik xavfsizligini nazorat qiluvchi idoralardan farq qiladi. Doimiy tashvishlar mavjud terroristik guruhlar yadroviy bomba ishlab chiqaradigan materialni sotib olish.[6]

Yadro jarayonlari va xavfsizlik masalalariga umumiy nuqtai

2011 yildan boshlab, yadro xavfsizligi masalalari bir qator holatlarda yuzaga keladi, jumladan:

Bundan mustasno termoyadro qurollari va eksperimental termoyadroviy tadqiqot, atom energiyasiga xos bo'lgan barcha xavfsizlik muammolari biologik iste'molni cheklash zarurligidan kelib chiqadi qilingan doz (radioaktiv moddalarni yutish yoki nafas olish) va tashqi nurlanish dozasi sababli radioaktiv ifloslanish.

Shuning uchun yadroviy xavfsizlik kamida o'z ichiga oladi:

  • Bo'linadigan materiallarni qazib olish, tashish, saqlash, qayta ishlash va yo'q qilish
  • Atom energiyasi ishlab chiqaruvchilarining xavfsizligi
  • Yadro qurolini, qurol sifatida foydalanishga qodir bo'lgan yadroviy materialni va boshqa radioaktiv materiallarni boshqarish va xavfsiz boshqarish
  • Ishlab chiqarishda, tibbiyotda va tadqiqotlarda xavfsiz foydalanish, hisob berish va ulardan foydalanish
  • Yadro chiqindilarini yo'q qilish
  • Radiatsiya ta'sirida cheklovlar

Mas'ul idoralar

Xalqaro

The Xalqaro atom energiyasi agentligi 1957 yilda yadroviy texnologiyalarni tinch yo'l bilan rivojlantirishni rag'batlantirish va yadro tarqalishidan xalqaro kafolatlarni ta'minlash uchun yaratilgan.

Xalqaro miqyosda Xalqaro atom energiyasi agentligi "o'zining a'zo davlatlari va dunyodagi ko'plab sheriklar bilan xavfsiz, xavfsiz va tinch yadro texnologiyalarini targ'ib qilishda ishlaydi."[7] Ba'zi olimlarning ta'kidlashicha 2011 yil Yaponiyaning yadroviy baxtsiz hodisalari atom sanoatida yetarlicha nazorat yo'qligi aniqlandi va shu sababli IAEA vakolatlarini qayta belgilash bo'yicha chaqiriqlar yangradi, chunki u butun dunyo bo'ylab atom elektr stantsiyalarini yaxshiroq politsiya qilishi mumkin.[8]

IAEA ning Yadro xavfsizligi to'g'risidagi konvensiyasi 1994 yil 17 iyunda Venada qabul qilingan va 1996 yil 24 oktyabrda kuchga kirgan. Konventsiyaning maqsadlari butun dunyoda yadro xavfsizligini yuqori darajasiga etkazish va saqlash, yadro inshootlarida samarali himoya vositalarini o'rnatish va saqlashdir. mumkin bo'lgan radiologik xavflarga qarshi va radiologik oqibatlarga olib keladigan baxtsiz hodisalarning oldini olish.[9]

Konventsiya Uch millik orol va Chernobil avariyalaridan so'ng 1992 yildan 1994 yilgacha bo'lgan bir qator ekspertlar yig'ilishlarida tuzilgan va bu davlatlarning, shu jumladan ularning milliy tartibga solish va yadro xavfsizligi idoralari va Xalqaro tashkilotlarning katta ishlarining natijasi edi. Konventsiya kotibiyati vazifasini bajaruvchi Atom energiyasi agentligi.

Ahdlashuvchi Tomonlarning majburiyatlari, asosan, IAEA Xavfsizlik asoslari "Yadro inshootlarining xavfsizligi" hujjatida (IAEA Xavfsizlik 110-sonli nashrida 1993 yilda nashr etilgan) yadro qurilmalari uchun xavfsizlik tamoyillarini qo'llashga asoslangan. Ushbu majburiyatlar qonunchilik va me'yoriy-huquqiy bazani, tartibga soluvchi organni va masalan, yashash, loyihalash, qurish, ekspluatatsiya, etarli moliyaviy va inson resurslarining mavjudligi, xavfsizlikni baholash va tekshirish, sifatni ta'minlash va favqulodda vaziyatlarga tayyorgarlik.

Konvensiyaga 2014 yilda Yadro xavfsizligi to'g'risidagi Vena deklaratsiyasi bilan o'zgartirishlar kiritilgan [10] Natijada quyidagi tamoyillar paydo bo'ldi:

1. Yangi atom elektr stantsiyalari ishga tushirilishi va ishlatilishidagi baxtsiz hodisalarni oldini olish maqsadiga mos keladigan va avariya sodir bo'lgan taqdirda radionuklidlarning uzoq vaqt ifloslanishini keltirib chiqaradigan joyni ifloslanishiga olib keladigan va barvaqt oldini oladigan loyihalashtirilishi, joylashtirilishi va qurilishi kerak. uzoq muddatli himoya choralari va harakatlarini talab qiladigan darajada radioaktiv chiqindilar yoki radioaktiv chiqindilar.

2. Xavfsizlikni kompleks va tizimli ravishda baholash, yuqorida ko'rsatilgan maqsadga javob beradigan xavfsizlikni yaxshilashni aniqlash uchun, ularning hayoti davomida mavjud bo'lgan qurilmalar uchun vaqti-vaqti bilan va muntazam ravishda o'tkazilishi kerak. Xavfsizlikni oqilona amaliy yoki erishish mumkin bo'lgan yaxshilanishlarni o'z vaqtida amalga oshirish kerak.

3. Atom elektr stantsiyalarining ishlash muddati davomida ushbu maqsadni hal qilish bo'yicha milliy talablar va qoidalar IAEA Xavfsizlik standartlarini va kerak bo'lganda, CNS-ning qayta ko'rib chiqilishida aniqlangan boshqa yaxshi amaliyotlarni hisobga olishdan iborat.

IAEA bilan bog'liq bir nechta muammolar mavjud, deydi Janubiy Kaliforniya universiteti xodimi Najmedin Meshkati 2011 yilda yozib:

"Bu xavfsizlik standartlarini tavsiya qiladi, lekin a'zo davlatlardan bu talablar bajarilmaydi; u atom energiyasini targ'ib qiladi, ammo yadrodan foydalanishni ham kuzatib boradi; bu atom energetikasi sohasini nazorat qiluvchi yagona global tashkilot, shu bilan birga, uning muvofiqligini tekshirish bilan ham tortiladi. Yadro qurolini tarqatmaslik to'g'risidagi Shartnoma (NPT) ".[8]

Milliy

Ko'p millatlar foydalanmoqda atom energiyasi yadro xavfsizligini nazorat qiluvchi va tartibga soluvchi maxsus muassasalarga ega bo'lish. Fuqarolik AQShdagi yadro xavfsizligi tomonidan tartibga solinadi Yadro nazorati bo'yicha komissiya (NRC). Biroq, atom sanoati tanqidchilari, tartibga solish organlari o'zlari ishlab chiqarish sohalari bilan juda bog'liq bo'lib, samarali bo'lishidan shikoyat qilmoqdalar. Kitob Qiyomat kuni mashinasi Masalan, milliy regulyatorlarning bir qator misollarini keltiradi, chunki ular "tartibga solmaydi, shunchaki silkitadi" (so'z voz kechish), masalan, Yaponiyada "tartibga soluvchilar va tartibga solinadiganlar uzoq vaqtdan beri do'st bo'lib kelgan, yadroviy bomba dahshati haqida o'ylagan jamoatchilikning shubhalarini bartaraf etish uchun birgalikda ishlashgan".[11] Boshqa misollar keltirilgan[12] quyidagilarni o'z ichiga oladi:

  • Xitoyda Xitoy milliy yadro korporatsiyasining sobiq bosh menejeri Kan Rixin 2010 yilda pora olganligi (va boshqa suiiste'molliklari) uchun umrbod qamoq jazosiga hukm qilingan Xitoyda bu hukm uning xavfsizligi bo'yicha ishining sifati to'g'risida savollar tug'dirdi. va Xitoyning yadroviy reaktorlarining ishonchliligi.
  • Hindistonda, yadroviy regulyator Milliy Atom Energetikasi Komissiyasiga hisobot beradi, u erda atom elektr stantsiyalarini qurishni qo'llab-quvvatlaydi va Atom energiyasini tartibga solish kengashining raisi SS Bajaj ilgari Hindistonning Atom Energiyasi Korporatsiyasida yuqori lavozimli ijrochi bo'lgan, u hozirda tartibga solishda yordam beradigan kompaniya.
  • Yaponiyada regulyator Iqtisodiyot, savdo va sanoat vazirligiga hisobot beradi, u atom sanoatini va vazirlik lavozimlarini va yadro biznesidagi yuqori lavozimlarni ilgari surishga intiladi, xuddi shu kichik mutaxassislar doirasiga kiradi.

Kitobda ilgari Fukusima provinsiyasining gubernatori bo'lgan Eisaku Sato (noma'lum yadro reaktori majmuasi bilan) sifatida regulyatorlar ta'kidlagan gumon tufayli yadro xavfsizligi buziladi: "Ularning barchasi tuklar qushlari".[12]

AQSh hukumati tomonidan tadqiqotlar, qurol-yarog 'ishlab chiqarish va dengiz kuchlari kemalarini boshqarish uchun nazorat qilinadigan yadroviy zavodlar va materiallarning xavfsizligi NRC tomonidan boshqarilmaydi.[13][14] Buyuk Britaniyada yadro xavfsizligi Yadro nazorati boshqarmasi (ONR) va Mudofaa yadro xavfsizligi regulyatori (DNSR). Avstraliya radiatsiyadan himoya qilish va yadro xavfsizligi agentligi (ARPANSA ) Avstraliyada quyosh radiatsiyasi va yadroviy nurlanish xavfini kuzatuvchi va aniqlaydigan Federal hukumat organidir. Bu bilan shug'ullanadigan asosiy organ ionlashtiruvchi va ionlashtirmaydigan nurlanish[15] va radiatsiyaviy himoyaga oid materiallarni nashr etadi.[16]

Boshqa agentliklarga quyidagilar kiradi:

Atom elektr stantsiyasining xavfsizligi va xavfsizligi

Murakkablik

Atom elektr stantsiyalari - bu hozirgi kungacha ishlab chiqilgan eng murakkab va murakkab energiya tizimlari.[17] Har qanday murakkab tizim, u qanchalik yaxshi ishlab chiqilgan va yaratilgan bo'lmasin, ishlamay qolishi mumkin emas.[4] Faxriy jurnalist va muallif Stefani Kuk munozara qildi:

Reaktorlarning o'zi juda katta miqdordagi xatolarga yo'l qo'yadigan juda murakkab mashinalar edi. Bu sodir bo'lganda Uch mil oroli 1979 yilda yadro olamidagi yana bir yoriqlar fosh etildi. Reaktorning yadrosi eriy boshlaguncha va hatto dunyodagi eng yuqori malakali yadro muhandislari ham qanday javob berishni bilmas ekan, bitta nosozlik boshqasiga, so'ngra boshqalarga olib keldi. Baxtsiz hodisa tizimidagi jiddiy kamchiliklarni aniqladi, bu aholi salomatligi va xavfsizligini himoya qilishga qaratilgan edi.[18]

1979 yil Uch Mile orolidagi avariya Perrowning kitobidan ilhomlangan Oddiy baxtsiz hodisalar, qaerda a yadro halokati yuzaga keladi, bu murakkab tizimdagi kutilmagan o'zaro ta'sir natijasida yuzaga keladi. TMI odatdagi baxtsiz hodisaning misoli edi, chunki u "kutilmagan, tushunarsiz, boshqarib bo'lmaydigan va muqarrar" edi.[19]

Perrow, Uch Mile orolidagi nosozlik tizimning juda murakkabligi oqibatidir, degan xulosaga keldi. Bunday zamonaviy yuqori xavfli tizimlar, muvaffaqiyatsizlikka moyil bo'lishiga qaramay, ularni boshqargan. Oxir oqibat ular "oddiy baxtsiz hodisa" deb atagan narsalarga duchor bo'lishlari muqarrar edi. Shuning uchun, u radikal ravishda qayta qurish haqida o'ylashimiz yoki agar iloji bo'lmasa, bunday texnologiyadan butunlay voz kechishimiz kerak, deb maslahat berdi u.[20]

Atom energetikasi tizimining murakkablashishiga yordam beradigan asosiy muammo bu uning uzoq umr ko'rishidir. Tijorat atom elektr stantsiyasining qurilishi boshlanishidan uning oxirgi radioaktiv chiqindilarni xavfsiz tarzda yo'q qilish muddati 100 yildan 150 yilgacha bo'lishi mumkin.[17]

Atom elektr stantsiyalarining ishdan chiqish rejimlari

Yadro inshootidagi inson va mexanik xatolarning kombinatsiyasi odamlar va atrof-muhitga katta zarar etkazishi mumkin degan xavotirlar mavjud:[21]

Ishlayotgan yadroviy reaktorlarda katta miqdordagi radioaktiv bo'linish mahsulotlari mavjud bo'lib, ular tarqalib ketgan taqdirda to'g'ridan-to'g'ri radiatsiya xavfini keltirib chiqarishi, tuproq va o'simliklarni ifloslantirishi va odamlar va hayvonlar tomonidan yutilishi mumkin. Odamning etarlicha yuqori darajada ta'sir qilishi ham qisqa muddatli kasallikni, ham o'limni va saraton va boshqa kasalliklardan uzoqroq o'lishni keltirib chiqarishi mumkin.[22]

Tijorat yadro reaktori a kabi portlashi mumkin emas atom bombasi chunki bu sodir bo'lishi uchun yoqilg'i hech qachon etarli darajada boyitilmaydi.[23]

Yadro reaktorlari turli yo'llar bilan ishdan chiqishi mumkin. Agar yadroviy materialning beqarorligi kutilmagan xatti-harakatni keltirib chiqarsa, bu nazoratsiz quvvat ekskursiyasiga olib kelishi mumkin. Odatda, reaktordagi sovutish tizimi bu sabab bo'ladigan ortiqcha issiqlikni boshqarish imkoniyatiga ega bo'lishi uchun mo'ljallangan; ammo, agar reaktor ham a sovutish suyuqligining yo'qolishi, keyin yonilg'i eritib yuborishi yoki uning ichiga solingan idishni qizib ketishiga olib kelishi mumkin. Ushbu hodisa a deb nomlanadi yadroviy eritma.

O'chirgandan so'ng, bir muncha vaqtgacha reaktor sovutish tizimlarini quvvatlantirish uchun tashqi energiyaga muhtoj. Odatda bu energiya ushbu zavod ulangan elektr tarmog'i yoki favqulodda dizel generatorlari tomonidan ta'minlanadi. Sovutish tizimlari uchun elektr energiyasini etkazib berishda xatolik yuz berdi Fukusima I, jiddiy baxtsiz hodisalarga olib kelishi mumkin.

Qo'shma Shtatlardagi yadro xavfsizligi qoidalari "yaqinda Yaponiyada sodir bo'lgan zilzila va tsunami singari, tarmoqdagi va favqulodda vaziyat generatorlaridan elektr energiyasini chiqarib yuboradigan bitta hodisa xavfini etarli darajada tortib ololmaydi", dedi Yadro nazorati komissiyasining rasmiylari 2011 yil iyun oyida. .[24]

Mexanik nosozlikdan himoya qilish uchun ko'plab yadro zavodlari ikki kunlik uzluksiz va qarovsiz ishlashdan so'ng avtomatik ravishda o'chirishga mo'ljallangan.

Atom zavodlarining hujumga qarshi zaifligi

Yadro reaktorlari harbiy mojarolar paytida eng yaxshi nishonga aylanadi va so'nggi o'ttiz yil mobaynida harbiy havo hujumlari, bosib olish, bosqinlar va kampaniyalar paytida bir necha bor hujum qilingan:[25]

  • 1980 yil sentyabr oyida Eron Iroqdagi Al Tuvayta yadro majmuasini bombardimon qildi Yong'in qilichi.
  • 1981 yil iyun oyida Isroilning havo hujumi Iroqning Osirak yadro tadqiqot inshootini butunlay yo'q qildi Opera operatsiyasi.
  • 1984 yildan 1987 yilgacha Iroq Eronning Bushehr atom zavodini olti marta bombardimon qildi.
  • 1982 yil 8 yanvarda ANKning qurolli qanoti Umkhonto we Sizwe Janubiy Afrikaning Koeberg atom elektr stantsiyasi qurilayotgan paytda unga hujum qildi.
  • 1991 yilda AQSh uchta yadro reaktorini va Iroqdagi boyitish bo'yicha uchuvchi qurilmani bombardimon qildi.
  • 1991 yilda, Iroq ishga tushirildi Skud raketalari Isroilnikiga Dimona yadroviy elektr stantsiyasi
  • 2007 yil sentyabr oyida, Isroil bombardimon qildi qurilayotgan Suriya reaktori.[25]

AQShda o'simliklar elektron nazorat ostida bo'lgan ikki qatorli baland to'siqlar bilan o'ralgan. Zavod hududi qurollangan qo'riqchilarning katta kuchi bilan qo'riqlanadi.[26] Kanadada barcha reaktorlarda "joylarda qurolli javob berish kuchlari" mavjud bo'lib, ular tarkibiga har kuni o'simliklarni qo'riqlaydigan engil zirhli mashinalar kiradi.[27] NRC-ning "Dizayn asoslari tahdidi" mezonlari sirdir va shuning uchun o'simliklar qanday kuchdan himoya qila olishlari noma'lum. Biroq, to scram (favqulodda o'chirishni amalga oshirish) o'simlik 5 soniyadan kam vaqtni oladi, to'siqsiz qayta boshlash soatlab davom etadi va bu terroristik kuchga radioaktivlikni yo'qotish maqsadiga jiddiy to'sqinlik qiladi.

Havodan qilingan hujum bu vaqtdan beri ta'kidlanib kelinayotgan muammo 11 sentyabr hujumlari AQShda Biroq, bu 1972 yilda uch nafar samolyotni olib qochgan nazoratni o'z qo'liga oldi AQShning sharqiy qirg'og'i bo'ylab mahalliy yo'lovchi reysi va samolyotni AQShga urish bilan tahdid qilgan yadro qurollari Oak Ridge (Tennesi) shtatidagi zavod. Samolyot samolyotni olib qochganlarning talablari qondirilgunga qadar saytdan 8000 metr balandlikka yaqinlashdi.[28][29]

Atom elektr stansiyasiga samolyot zarba berganda radioaktivlikning tarqalishiga qarshi eng muhim to'siq - bu binolarni saqlash va uning raketa qalqoni. NRC sobiq raisi Deyl Klayn "atom elektr stantsiyalari tabiatan mustahkam tuzilmalar bo'lib, bizning tadqiqotlarimiz samolyot tomonidan gipotetik hujumda etarli darajada himoya qilinishini ko'rsatmoqda. NRC shuningdek, atom elektr stantsiyalari operatorlaridan katta yong'inlarni boshqarish imkoniyatiga ega bo'lishni talab qiladigan harakatlarni amalga oshirdi. portlashlar - nima bo'lishidan qat'i nazar. "[30]

Bundan tashqari, tarafdorlar AQSh Elektr energetikasi tadqiqotlari instituti tomonidan reaktor va chiqindilarni yoqilg'isi omborining mustahkamligini sinovdan o'tkazgan va ular bilan taqqoslanadigan terroristik hujumni amalga oshirishi kerakligini aniqlagan katta tadqiqotlarga ishora qilmoqdalar. 11 sentyabr terroristik hujumlari AQShda sarflangan yoqilg'i odatda zavodning "qo'riqlanadigan zonasi" ichida joylashgan[31] yoki a ishlatilgan yadro yoqilg'isini tashish kassasi; uni ishlatish uchun o'g'irlash "iflos bomba "Bu juda qiyin bo'lar edi. Kuchli nurlanish ta'sirida, albatta, buni amalga oshirishga urinayotgan har qanday odam tezda qobiliyatsiz bo'ladi yoki o'ldiriladi.[32]

Terroristik hujumlar tahdidi

Atom elektrostansiyalari terroristik hujumlarning nishonlari deb hisoblanadi.[33] Birinchi atom elektr stantsiyalarini qurish paytida ham xavfsizlik organlari tomonidan bu masala tavsiya qilingan. Terroristlar yoki jinoyatchilar tomonidan atom elektr stansiyalariga qarshi hujumning aniq tahdidlari bir nechta shtatlar tomonidan hujjatlashtirilgan.[33] Qadimgi atom elektr stantsiyalari Germaniyada avtohalokatlarga qarshi maxsus himoyasiz qurilgan bo'lsa, keyinchalik katta beton binolar bilan qurilgan atom elektr stantsiyalari qisman havo falokatlaridan himoyalangan. Ular taxminan 800 km / soat tezlikda jangovar samolyotlarning ta'siriga qarshi ishlab chiqilgan.[34] U Phantom II tipidagi samolyotning massasi 20 tonna va tezligi 215 m / s bo'lgan samolyotning ta'sirini baholash uchun asos sifatida qabul qilingan.[35]

Terroristdan kelib chiqadigan xavf AESda katta samolyotlarning qulashiga sabab bo'ldi [34] hozirda muhokama qilinmoqda. Bunday terroristik hujum halokatli oqibatlarga olib kelishi mumkin.[36] Masalan, Germaniya hukumati Biblis A atom elektr stansiyasi harbiy samolyot hujumidan to'liq himoyalanmasligini tasdiqladi.[37] 2016 yilda Bryusseldagi teraktlardan so'ng bir nechta atom elektr stantsiyalari qisman evakuatsiya qilingan. Shu bilan birga, terrorchilar atom elektr stansiyalarida josuslik qilgani va bir nechta xodimlarning kirish huquqlari olib qo'yilganligi ma'lum bo'ldi.[38]

Bundan tashqari, masalan, "iflos bomba" deb nomlangan "yadroviy terrorizm" katta potentsial xavf tug'diradi.[39][40]

Zavod joylashgan joy

zilzila xaritasi

Ko'pgina mamlakatlarda o'simliklar sovutish suvining tayyor manbasini ta'minlash uchun ko'pincha qirg'oqda joylashgan muhim suv ta'minoti tizimi. Natijada dizayn toshqin xavfini o'z zimmasiga olishi kerak tsunami hisobga olingan. The Butunjahon energetika kengashi (WEC) tabiiy ofatlar xavfi o'zgarib bormoqda va bu kabi ofatlar ehtimolini oshiradi zilzilalar, tsiklonlar, bo'ronlar, tayfunlar, toshqin.[41] Yuqori harorat, yog'ingarchilik darajasi past va og'ir qurg'oqchilik toza suv tanqisligiga olib kelishi mumkin.[41] Suv toshqini xavfini to'g'ri hisoblay olmaslik a ga olib keladi 2-daraja tadbir Xalqaro yadroviy voqealar ko'lami davomida 1999 yil Blayais atom elektrostansiyasining toshqini,[42] tufayli suv toshqini paytida 2011 Txoku zilzilasi va tsunami ga olib boring Fukusima I yadro hodisalari.[43]

Joylashgan o'simliklarning dizayni seysmik faol zonalar, shuningdek, zilzila va tsunami xavfini hisobga olishni talab qiladi. Yaponiya, Hindiston, Xitoy va AQSh zilzilaga moyil mintaqalarda o'simliklari bo'lgan mamlakatlar qatoriga kiradi. Yaponiyaga etkazilgan zarar Kashivazaki-Kariwa atom elektr stantsiyasi davomida 2007 yil Chetsu dengizdagi zilzila[44][45] tomonidan bildirilgan xavotirlar ta'kidlandi Yaponiyadagi mutaxassislar Fukusimadagi avariyalardan oldin, ular ogohlantirgan genpatsu-shinsai (domino ta'siridagi atom elektr stantsiyasining zilzila falokati).[46]

Bir nechta reaktor

The Fukusima yadroviy halokati bir nechta yadroviy reaktor agregatlarini bir-biriga yaqin joyda qurish xavfini tasvirlab berdi. Reaktorlarning yaqinligi sababli, zavod direktori Masao Yoshida "uchta reaktordagi yadrolarning erishi va uchta agregatda ochiq yoqilg'i hovuzlari bilan bir vaqtning o'zida kurashishga urinish holatiga keltirildi".[47]

Yadro xavfsizligi tizimlari

Tomonidan belgilangan yadro xavfsizligi tizimlarining uchta asosiy maqsadi Yadro nazorati bo'yicha komissiya reaktorni o'chirish, uni o'chirish holatida saqlash va hodisalar va baxtsiz hodisalar paytida radioaktiv moddalarning tarqalishini oldini olish.[48] Ushbu maqsadlar har birining o'ziga xos funktsiyalarini bajaradigan turli xil tizimlarning bir qismi bo'lgan turli xil uskunalar yordamida amalga oshiriladi.

Radioaktiv materiallarning muntazam chiqindilari

Kundalik muntazam ish paytida yadro zavodlaridan radioaktiv materiallar chiqindilari o'simliklarning tashqi qismiga tarqaladi, ammo ular ozgina miqdorda.[49][50][51][52]The kunlik chiqindilar havoga, suvga va tuproqqa boring.[50][51]

NRC "atom elektr stantsiyalari ba'zida radioaktiv gazlar va suyuqliklarni atrof-muhitga nazorat ostida va nazorat ostida bo'lgan sharoitda chiqarib yuboradi, chunki ular jamoat va atrof-muhit uchun hech qanday xavf tug'dirmaydi",[53] va "atom elektr stantsiyasining normal ishlashi paytida muntazam chiqindilar hech qachon o'limga olib kelmaydi".[54]

Birlashgan Millatlar Tashkiloti ma'lumotlariga ko'ra (UNSCEAR ), yadro yoqilg'isi aylanishini o'z ichiga olgan atom elektr stantsiyasining muntazam ishlashi 0,0002 ni tashkil qiladi millisieverts (mSv) har yili o'rtacha radiatsiya ta'sirida; Chernobil fojiasi merosi 2008 yilgi hisobot bo'yicha o'rtacha dunyo miqyosida 0,002 mSv / a; va tabiiy radiatsiya ta'sir qilish har yili o'rtacha 2,4 mSv ni tashkil qiladi shaxsning joylashishiga qarab o'zgarib turadi 1 dan 13 mSv gacha.[55]

Yapon xalqining atom energiyasi xavfsizligi haqidagi tasavvurlari

2012 yil mart oyida Bosh vazir Yoshihiko Noda Yaponiya hukumati Fukusima halokati uchun aybni birgalikda bo'lishini aytib, rasmiylar mamlakatning texnologik xatosizligi tasvirini ko'r qilib, "xavfsizlik afsonasiga juda botgan" deb aytdi.[56]

Jurnalist Yoichi Funabashi kabi mualliflar Yaponiyani "yadroviy favqulodda vaziyatlar yuzaga kelishi mumkin bo'lgan tahlikaga qarshi nafratlanishda" ayblashmoqda. Unga ko'ra, yadroviy favqulodda vaziyatlarda foydalanish uchun robotlarni ishlab chiqarish bo'yicha milliy dastur "asosiy xavfni juda ko'p sindirib tashlaganligi" sababli o'rta oqimda bekor qilindi. Yaponiya robototexnika sohasida yirik davlat bo'lsa-da, tabiiy ofat paytida Fukusimaga yuboradigan hech kim yo'q edi. Uning ta'kidlashicha, Yaponiyaning Yadro xavfsizligi komissiyasi engil suvli yadro inshootlari uchun xavfsizlik bo'yicha ko'rsatmalarida "quvvatni uzoq vaqt yo'qotish ehtimoli hisobga olinmasligi kerak". Shu bilan birga, sovutish nasoslari quvvatining uzoq vaqt davomida yo'qolishi Fukusimaning erishini keltirib chiqardi.[57]

Buyuk Britaniya kabi boshqa mamlakatlarda atom zavodlari mutlaqo xavfsiz deb da'vo qilinmagan. Buning o'rniga, katta baxtsiz hodisa (masalan) yiliga 0,0001 dan pastroq bo'lishi ehtimolini da'vo qilmoqda.[iqtibos kerak ]

Kabi hodisalar Fukushima Daiichi yadroviy halokati atom energetikasi bo'yicha qat'iy qoidalardan qochish mumkin edi. 2002 yilda Fukusima zavodini ishlatgan TEPCO kompaniyasi 1997 yildan 2002 yilgacha 200 marotaba hisobotlarni soxtalashtirganini tan oldi. TEPCO buning uchun jarimaga tortilmadi. Buning o'rniga ular to'rt nafar yuqori darajadagi rahbarlarini ishdan bo'shatdilar. Keyinchalik bu to'rt kishidan uchtasi TEPCO bilan savdo qiladigan kompaniyalarga ishga joylashdi.[58]

Uran ta'minoti

Yadro yoqilg'isi strategik manba bo'lib, o'simliklarning to'xtab qolishining oldini olish uchun uni uzluksiz etkazib berish zarur. IAEA kamida ikkita etkazib beruvchiga siyosiy hodisalar yoki monopolistik bosim natijasida etkazib berishni to'xtatilishini ta'minlashni tavsiya qiladi. Dunyo bo'ylab uran zaxiralari juda xilma-xil bo'lib, turli mamlakatlardagi o'nlab etkazib beruvchilar va oz miqdordagi yoqilg'i energiya sektori talab qiladigan katta hajmdagi qazilma yoqilg'iga qaraganda diversifikatsiyani ancha osonlashtiradi. Masalan, Ukraina bu muammoga duch keldi Rossiya bilan ziddiyat yoqilg'ini etkazib berishni davom ettirgan, ammo uni siyosiy bosimdan foydalangan. 2016 yilda Ukraina etkazib berishning 50 foizini Rossiyadan, qolgan yarmini Shvetsiyadan oldi,[59] boshqa mamlakatlar bilan bir qator ramka shartnomalari bilan.[60]

Yadro materialining xavfliligi

Yadro yoqilg'isi suv ostida va yopiq holda saqlangan Hanford sayti yilda Vashington, AQSH.

Hozirda AQShda jami 47000 tonna yuqori darajadagi yadro chiqindilari saqlanmoqda. Yadro chiqindilari taxminan 94% Uran, 1,3% Plutoniy, 0,14% boshqalar aktinidlar va 5,2% parchalanish mahsulotlari.[61] Ushbu chiqindilarning taxminan 1,0% uzoq umr ko'radigan izotoplardan iborat 79Se, 93Zr, 99Te, 107Pd, 126Sn, 129Men va 135CS Qisqa muddatli izotoplar, shu jumladan 89Sr, 90Sr, 106Ru, 125Sn, 134CS, 137CS va 147Pm bir yilda 0,9% ni tashkil qiladi, 100 yilda 0,1% gacha kamayadi. Qolgan 3.3-4.1% radioaktiv bo'lmagan izotoplardan iborat.[62][63][64] Texnik muammolar mavjud, chunki uzoq umrga bo'linadigan mahsulotlarni blokirovka qilish afzalroq, ammo bu muammoni mubolag'a qilmaslik kerak. Yuqorida aytib o'tilganidek, bir tonna chiqindining o'lchanadigan radioaktivligi taxminan 600 T ni tashkil qiladiBq bir km tabiiy radioaktivlikka teng3 Yer qobig'ining bir qismi, agar ko'milgan bo'lsa, u trillionga atigi 25 qismni jami radioaktivlikka qo'shadi.

Qisqa muddatli yuqori darajadagi yadro chiqindilari va uzoq umr ko'rgan past darajadagi chiqindilar o'rtasidagi farqni quyidagi misolda ko'rsatish mumkin. Yuqorida aytib o'tilganidek, bittasi mol ikkalasining ham 131Men va 129Men 3x10 ni chiqaraman23 yarim umrga teng bo'lgan davrda parchalanadi. 131Men 970-ning chiqarilishi bilan parchalanaman keV hozircha 129Men 194-ning chiqarilishi bilan parchalanaman keV energiya. 131 gramm 131Shuning uchun men 45 gigani chiqaramanjyul sakkiz kun ichida 600 E boshlang'ich tezligidan boshlanadiBq 90 kilogrammni ozod qilishvatt oxirgi radioaktiv parchalanish ikki yil ichida sodir bo'lganligi bilan.[65] Aksincha, 129 gm 129Shuning uchun men 1550 million yil davomida 950 gigajulani 850 M dan boshlagan edimBq 25 mikro ozod qilishvatt 100000 yil ichida radioaktivlik 1% dan kam kamayishi bilan.[66]

Bir tonna yadro chiqindisi ham kamayadi CO2 25 million tonnaga emissiya.[61]

Yadroga qarshi norozilik namoyishi yadroviy chiqindilarni yo'q qilish markazi da Gorleben Germaniyaning shimoliy qismida

[67] Radionuklidlar kabi 129Men yoki 131Men juda radioaktiv yoki uzoq umr ko'rishim mumkin, lekin ularning ikkalasi ham bo'lolmaydi. Bir mol 129Men (129 gramm) bir xil miqdordagi parchalanishni boshdan kechiraman (3x10.)23) 15,7 million yil ichida, xuddi bir mol 1318 kun ichida men (131 gramm). 131Shuning uchun men juda radioaktivman, lekin tezda yo'q bo'lib ketaman 129Men juda uzoq vaqt davomida juda past darajadagi radiatsiyani chiqaraman. Ikki uzoq muddatli bo'linish mahsulotlari, texnetsiy-99 (yarim umr 220000 yil) va yod-129 (yarim umr 15,7 million yil), biosferaga kirish ehtimoli katta bo'lganligi sababli biroz ko'proq tashvishlanmoqda.[68] The transuranik elementlar ishlatilgan yoqilg'ida neptunium-237 (yarim umr ikki million yil) va plutoniy-239 (yarim umr 24000 yil).[69] atrof muhitda ham uzoq vaqt saqlanib qoladi. Ikkala muammo uchun ham to'liq echim aktinidlar va kam uglerodli energiyaga bo'lgan ehtiyoj bu bo'lishi mumkin ajralmas tezkor reaktor. IFR reaktorida to'liq yonishdan keyin bir tonna yadro chiqindisi 500 million tonnani oldini oladi CO2 atmosferaga kirishdan.[61] Aks holda, chiqindilarni saqlash odatda tozalashni talab qiladi, undan keyin chiqindilarni doimiy saqlash, yo'q qilish yoki toksik bo'lmagan shaklga o'tkazishni o'z ichiga olgan uzoq muddatli boshqaruv strategiyasi qo'llaniladi.[70]

Dunyo bo'ylab hukumatlar chiqindilarni boshqarish va yo'q qilishning bir qator variantlarini ko'rib chiqmoqdalar, odatda chuqur geologik joylashishni nazarda tutadilar, ammo chiqindilarni boshqarish bo'yicha uzoq muddatli echimlarni amalga oshirishda cheklangan yutuqlarga erishildi.[71] Bu qisman bunga sabab, ko'rib chiqilayotgan vaqt oralig'i radioaktiv chiqindilar 10000 dan million yilgacha,[72][73] taxminiy nurlanish dozalari ta'siriga asoslangan tadqiqotlar bo'yicha.[74]

Vaqt birligida parchalanadigan radioizotop atomlarining ulushi uning yarim umriga teskari proportsional bo'lgani uchun, ko'milgan odam miqdorining nisbiy radioaktivligi radioaktiv chiqindilar vaqt o'tishi bilan tabiiy radioizotoplarga nisbatan kamayadi (masalan, 120 trillion tonna torium va 40 trillion tonna uranning parchalanish zanjiri) har bir millionga nisbatan qismlarning nisbatan iz kontsentratsiyasida qobig'ining 3 * 10 dan yuqori qismida19 tonna massa).[75][76][77] Masalan, minglab yillar davomida, eng qisqa muddatli yarim umr ko'rgan radioizotoplar parchalanib ketganidan so'ng, AQSh yadro chiqindilarini ko'mib tashlash, er yuzidagi tosh va tuproqning eng yuqori 2000 futidagi radioaktivlikni oshiradi. Qo'shma Shtatlar (10 million km)2) tomonidan Yig'indisi bo'yicha 10 milliondan 1 qism tabiiy radioizotoplar Bunday hajmda, garchi sayt yaqinida sun'iy radioizotoplar kontsentratsiyasi bunday o'rtacha ko'rsatkichdan ancha yuqori bo'lsa.[78]

Xavfsizlik madaniyati va inson xatolari

The termoyadro bombasi Dengizga tushgan narsa qutuldi Palomares, Almeriya, 1966

Yadro xavfsizligi muhokamalarida nisbatan keng tarqalgan tushunchalardan biri bu xavfsizlik madaniyati. The Xalqaro yadroviy xavfsizlik bo'yicha maslahat guruhi, atamani "atom elektr stantsiyalarining xavfsizligiga ta'sir qiladigan har qanday faoliyat bilan shug'ullanadigan barcha shaxslarning shaxsiy fidoyiligi va hisobdorligi" deb ta'riflaydi.[79] Maqsad "inson qobiliyatlaridan foydalanadigan, tizimlarni inson zaifliklaridan himoya qiladigan va odamlarni tizim bilan bog'liq xavflardan himoya qiladigan tizimlarni loyihalashtirish".[79]

Shu bilan birga, operatsion amaliyotni o'zgartirish oson emasligi haqida ba'zi dalillar mavjud. Operatorlar deyarli hech qachon ko'rsatmalarga va yozma protseduralarga aniq amal qilmaydi, va "operatorlar o'z ishlarini bajarishlari kerak bo'lgan haqiqiy ish yuki va vaqt cheklovlarini hisobga olgan holda" qoidalarni buzish juda mantiqiy ko'rinadi. Yadro xavfsizligi madaniyatini oshirishga qaratilgan ko'plab urinishlar "odamlar o'zgarishga kutilmagan tarzda moslashishi bilan qoplandi".[79]

Ga binoan Areva Janubi-Sharqiy Osiyo va Okeaniya direktori Selena Ng, Yaponiya Fukusima yadroviy halokati bu "xavfsizlik masalalarida har doim ham etarlicha shaffof bo'lmaydigan yadro sanoati uchun katta ogohlantirish". Uning so'zlariga ko'ra, "Fukusimadan oldin qanoatlanish bor edi va menimcha, hozirda bunday xotirjamlikka erisha olmaymiz".[80]

Tomonidan o'tkazilgan baholash Komissariyat à l’Énergie Atomique Frantsiyadagi (CEA) xulosa qilishicha, hech qanday texnik yangiliklar atom elektr stantsiyalari faoliyati bilan bog'liq inson tomonidan kelib chiqadigan xatolar xavfini bartaraf eta olmaydi. Ikki turdagi xatolar eng jiddiy deb topildi: dala ishlari paytida yo'l qo'yilgan xatolar, masalan, avariyaga olib kelishi mumkin bo'lgan texnik xizmat va sinovlar; va kichik baxtsiz hodisalar paytida sodir bo'lgan insoniy xatolar, bu muvaffaqiyatsizlikka olib keladi.[81]

Ga binoan Mike Shnayder, reaktor xavfsizligi, avvalambor, "xavfsizlik madaniyati" ga, shu jumladan texnik xizmat ko'rsatish va o'qitish sifatiga, operator va ishchi kuchining vakolatiga va tartibga soluvchi nazoratning qat'iyligiga bog'liq. Shunday qilib, yaxshi ishlab chiqilgan, yangi reaktor har doim ham xavfsizroq emas va eski reaktorlar yangilariga qaraganda xavfli emas. 1979 yilda Qo'shma Shtatlardagi Three Mile Island orolidagi avariya faqat uch oy oldin ish boshlagan reaktorda sodir bo'lgan va Chernobil fojiasi faqat ikki yillik operatsiyadan so'ng sodir bo'ldi. Sovutgichning jiddiy yo'qotilishi 1998 yilda, ishga tushirilgandan besh oy o'tmay, Frantsiyaning Civaux-1 reaktorida sodir bo'lgan.[82]

O'simlik xavfsizligi qanchalik xavfsiz bo'lsa ham, uni xatolarga moyil odamlar boshqaradi. Loran Striker, yadro muhandisi va raisi Butunjahon yadro operatorlari assotsiatsiyasi operatorlar xotirjamlikdan ehtiyot bo'lishlari va o'zlariga haddan tashqari ishonmasliklari kerakligini aytmoqda. Mutaxassislarning ta'kidlashicha, "o'simlik xavfsizligini belgilaydigan eng katta yagona ichki omil bu tartibga soluvchilar, operatorlar va ishchi kuchlari o'rtasidagi xavfsizlik madaniyati - va bunday madaniyatni yaratish oson emas".[82]

Tergovchi jurnalist Erik Shlosser, muallifi Buyruq va boshqaruv, 1250 ta ishtirok etgan kamida 700 ta "muhim" baxtsiz hodisalar va hodisalarni aniqladi yadro qurollari 1950 yildan 1968 yilgacha Qo'shma Shtatlarda qayd etilgan.[83] Mutaxassislarning fikricha, Sovuq urush davrida 50 tagacha yadro quroli yo'qolgan.[84]

Xatarlar

Muntazam sog'liq uchun xavfli va issiqxona gazlari chiqindilari yadroviy bo'linish quvvati ko'mir bilan bog'liq bo'lganlarga nisbatan kichik, ammo bir nechta "halokatli xatarlar" mavjud:[85]

Elektr stansiyalarida va yadro texnologiyalarida radioaktiv moddalarning o'ta xavfli ekanligi shunchalik yaxshi ma'lumki, AQSh hukumati (sanoatning talabiga binoan) atom sanoatini bunday yukning to'liq yukini ko'tarishdan himoya qiladigan qoidalarni qabul qilishga undadi. xavfli yadro operatsiyalari. The Narx-Anderson to'g'risidagi qonun baxtsiz hodisalar yuz berganda sanoatning javobgarligini cheklaydi va 1982 yildagi Yadro chiqindilari siyosati to'g'risidagi qonun federal hukumatga yadro chiqindilarini doimiy saqlash uchun javobgarlikni yuklaydi.[86]

Aholining zichligi - bu boshqa xatarlarni baholash kerak bo'lgan muhim ob'ektiv, deydi Loran Striker, yadroviy muhandis va tashkilot raisi. Butunjahon yadro operatorlari assotsiatsiyasi:[82]

The KANUPP Pokistonning Karachi shahridagi zavodda eng ko'p odamlar - 8,2 million kishi - yadro zavodidan 30 kilometr uzoqlikda yashaydilar, biroq uning faqat bitta kichik reaktori 125 megavatt quvvatga ega. Ligada keyingi o'rinda esa ancha katta zavodlar joylashgan - Tayvanning 1933 megavattli Kuosheng zavodi, 5,5 million kishi 30 km radiusda va 1,208 megavattlik Chin Shan zavodi, 4,7 million; ikkala zonaga Taypey poytaxti kiradi.[82]

Fukusima Daiichi atom elektr stantsiyasining 30 kilometr radiusida yashovchi 172 ming kishi ushbu hududni evakuatsiya qilishga majbur qilingan yoki tavsiya qilingan. Umuman olganda, 2011 yilgi tahlil Tabiat va Nyu-Yorkdagi Kolumbiya universiteti shuni ko'rsatadiki, taxminan 21 ta yadro zavodlarida 30 km radiusda 1 milliondan oshiq populyatsiya mavjud va oltita o'simlikda bu radiusda 3 milliondan katta populyatsiya mavjud.[82]

Qora oqqush Voqealar katta oqibatlarga olib keladigan juda kam uchraydigan hodisa. Rejalashtirishga qaramay, atom energetikasi har doim qora oqqush voqealariga nisbatan zaif bo'lib qoladi:[5]

Noyob hodisani, ayniqsa, hech qachon bo'lmagan voqeani oldindan bilish qiyin, rejalashtirish qimmat va statistik ma'lumotlarga ko'ra chegirma oson. Biror narsa faqat 10000 yilda sodir bo'lishi kerakligi, bu ertaga bo'lmaydi degani emas.[5] O'simlikning odatdagi 40 yillik hayoti davomida taxminlar ham o'zgarishi mumkin, chunki ular 2001 yil 11 sentyabrda, 2005 yil avgustda Katrina dovuli boshlanganda va 2011 yil mart oyida Fukusimadan keyin.[5]

Qora oqqushlarning mumkin bo'lgan hodisalari ro'yxati "la'nat bilan xilma-xil":[5]

Yadro reaktorlari va ularning sarflangan yoqilg'i havzalari o'g'irlangan samolyotlarni boshqarayotgan terrorchilar uchun nishon bo'lishi mumkin. Reactors may be situated downstream from dams that, should they ever burst, could unleash massive floods. Some reactors are located close to xatolar or shorelines, a dangerous scenario like that which emerged at Three Mile Island and Fukushima – a catastrophic coolant failure, the overheating and melting of the radioactive fuel rods, and a release of radioactive material.[5]

The AP1000 taxmin qilingan yadro shikastlanishining chastotasi of 5.09 x 10−7 bir o'simlik uchun yiliga. The Evolyutsion quvvat reaktori (EPR) has an estimated core damage frequency of 4 x 10−7 bir o'simlik uchun yiliga. In 2006 General Electric published recalculated estimated core damage frequencies per year per plant for its nuclear power plant designs:[87]

BWR/4 – 1 x 10−5
BWR/6 – 1 x 10−6
ABWR – 2 x 10−7
ESBWR – 3 x 10−8

Beyond design basis events

The Fukushima I nuclear accident was caused by a "beyond design basis event," the tsunami and associated earthquakes were more powerful than the plant was designed to accommodate, and the accident is directly due to the tsunami overflowing the too-low seawall.[2] O'shandan beri dizayn asosida kutilmagan hodisalar ehtimoli zavod operatorlari uchun katta tashvish bo'lib kelgan.[82]

Transparency and ethics

Jurnalistning so'zlariga ko'ra Stefani Kuk, it is difficult to know what really goes on inside nuclear power plants because the industry is shrouded in secrecy. Corporations and governments control what information is made available to the public. Cooke says "when information is made available, it is often couched in jargon and incomprehensible prose".[88]

Kennette Benedict has said that nuclear technology and plant operations continue to lack transparency and to be relatively closed to public view:[89]

Despite victories like the creation of the Atomic Energy Commission, and later the Nuclear Regular Commission, the secrecy that began with the Manhattan Project has tended to permeate the civilian nuclear program, as well as the military and defense programs.[89]

In 1986, Soviet officials held off reporting the Chernobyl disaster for several days. The operators of the Fukushima plant, Tokyo Electric Power Co, were also criticised for not quickly disclosing information on releases of radioactivity from the plant. Russian President Dmitry Medvedev said there must be greater transparency in nuclear emergencies.[90]

Historically many scientists and engineers have made decisions on behalf of potentially affected populations about whether a particular level of risk and uncertainty is acceptable for them. Many nuclear engineers and scientists that have made such decisions, even for good reasons relating to long term energy availability, now consider that doing so without informed consent is wrong, and that nuclear power safety and nuclear technologies should be based fundamentally on morality, rather than purely on technical, economic and business considerations.[91]

Non-Nuclear Futures: The Case for an Ethical Energy Strategy tomonidan 1975 yilda nashr etilgan kitob Amori B. Lovins and John H. Price.[92][93] The main theme of the book is that the most important parts of the atom energetikasi bo'yicha bahs are not technical disputes but relate to personal values, and are the legitimate province of every citizen, whether technically trained or not.[94]

Yadro va radiatsion avariyalar

The nuclear industry has an excellent safety record and the deaths per megawatt hour are the lowest of all the major energy sources.[95] Ga binoan Ziyo Mian va Alexander Glaser, the "past six decades have shown that nuclear technology does not tolerate error". Nuclear power is perhaps the primary example of what are called ‘high-risk technologies’ with ‘catastrophic potential’, because “no matter how effective conventional safety devices are, there is a form of accident that is inevitable, and such accidents are a ‘normal’ consequence of the system.” In short, there is no escape from system failures.[96]

Whatever position one takes in the atom energetikasi bo'yicha bahs, the possibility of catastrophic accidents and consequent economic costs must be considered when nuclear policy and regulations are being framed.[97]

Accident liability protection

Kristin Shrader-Frechette has said "if reactors were safe, nuclear industries would not demand government-guaranteed, accident-liability protection, as a condition for their generating electricity".[98] No private insurance company or even consortium of insurance companies "would shoulder the fearsome liabilities arising from severe nuclear accidents".[99]

Hanford sayti

The Hanford sayti represents two-thirds of America's high-level radioactive waste by volume. Yadro reaktorlari Hanford saytidagi daryo bo'yida joylashgan Kolumbiya daryosi 1960 yil yanvar oyida.

The Hanford sayti asosan ishdan chiqarilgan yadroviy bo'yicha ishlab chiqarish kompleksi Kolumbiya daryosi AQSh shtatida Vashington, tomonidan boshqariladi Amerika Qo'shma Shtatlari federal hukumati. Birinchidan, saytda ishlab chiqarilgan plutonyum ishlatilgan atom bombasi, da sinovdan o'tgan Trinity site va Semiz erkak, bomba portlatilgan ustida Nagasaki, Yaponiya. Davomida Sovuq urush, loyiha to'qqizta yadro reaktori va beshta yirik reaktorni o'z ichiga olgan holda kengaytirildi plutonyumni qayta ishlash tarkibidagi 60000 qurolning aksariyati uchun plutonyum ishlab chiqaradigan komplekslar AQSh yadro qurollari.[100][101] Xavfsizlikning dastlabki dastlabki protseduralari va chiqindilarni yo'q qilish amaliyoti etarli emas edi, shundan beri hukumat hujjatlari Xanfordning operatsiyalari sezilarli darajada radioaktiv materiallar havoga va Kolumbiya daryosiga, bu hali ham aholining sog'lig'iga tahdid soladi va ekotizimlar.[102] Qurol ishlab chiqaradigan reaktorlar Sovuq Urush oxirida ishdan chiqarildi, ammo o'nlab yillar davomida ishlab chiqarish 53 million AQSh gallonni (200 000 m) qoldirdi.3) ning yuqori darajadagi radioaktiv chiqindilar,[103] qo'shimcha 25 million kub fut (710 000 m.)3) qattiq radioaktiv chiqindilar, 200 kvadrat mil (520 km)2) sayt ostidagi ifloslangan er osti suvlari[104] va vaqti-vaqti bilan hujjatlashtirilmagan ifloslanishlar tezligini pasaytiradigan va tozalash xarajatlarini oshiradigan kashfiyotlar.[105] Hanford maydoni mamlakat miqyosidagi yuqori darajadagi radioaktiv chiqindilarning uchdan ikki qismini tashkil etadi.[106] Bugungi kunda Xanford Qo'shma Shtatlardagi eng ifloslangan yadro maydonidir[107][108] and is the focus of the nation's largest atrof-muhitni tozalash.[100]

1986 yil Chernobil fojiasi

Map showing Caesium-137 contamination in Belorussiya, Rossiya va Ukraina as of 1996.

The Chernobyl disaster was a yadro halokati that occurred on 26 April 1986 at the Chernobil AES yilda Ukraina. An explosion and fire released large quantities of radioaktiv ifloslanish into the atmosphere, which spread over much of Western USSR and Europe. It is considered the worst nuclear power plant accident in history, and is one of only two classified as a level 7 event on the Xalqaro yadroviy voqealar ko'lami (boshqasi Fukushima Daiichi yadroviy halokati ).[109] The battle to contain the contamination and avert a greater catastrophe ultimately involved over 500,000 workers and cost an estimated 18 billion rubl, crippling the Soviet economy.[110]The accident raised concerns about the safety of the nuclear power industry, slowing its expansion for a number of years.[111]

UNSCEAR has conducted 20 years of detailed scientific and epidemiologik research on the effects of the Chernobyl accident. Apart from the 57 direct deaths in the accident itself, UNSCEAR predicted in 2005 that up to 4,000 additional saraton deaths related to the accident would appear "among the 600 000 persons receiving more significant exposures (liquidators working in 1986–87, evacuees, and residents of the most contaminated areas)".[112] Russia, Ukraine, and Belarus have been burdened with the continuing and substantial zararsizlantirish and health care costs of the Chernobyl disaster.[113]

Eleven of Russia's reactors are of the RBMK 1000 type, similar to the one at Chernobil AES. Some of these RBMK reactors were originally to be shut down but have instead been given life extensions and uprated in output by about 5%. Critics say that these reactors are of an "inherently unsafe design", which cannot be improved through upgrades and modernization, and some reactor parts are impossible to replace. Russian environmental groups say that the lifetime extensions "violate Russian law, because the projects have not undergone environmental assessments".[114]

2011 Fukushima I accidents

Fukushima reactor control room.
2011 yilgi yapon tilidan keyin Fukusima yadroviy halokati, hukumat mamlakatdagi 54 ta atom elektr stantsiyasini yopdi. 2013 yilga kelib, Fukusima maydoni saqlanib qolmoqda highly radioactive, with some 160,000 evacuees still living in temporary housing, and some land will be unfarmable for centuries. The difficult cleanup job 40 va undan ko'proq yilni oladi va o'nlab milliard dollar turadi.[115][116]

Despite all assurances, a major yadro halokati on the scale of the 1986 Chernobyl disaster happened again in 2011 in Japan, one of the world's most industrially advanced countries. Nuclear Safety Commission Chairman Haruki Madarame told a parliamentary inquiry in February 2012 that "Japan's atomic safety rules are inferior to global standards and left the country unprepared for the Fukushima nuclear disaster last March". There were flaws in, and lax enforcement of, the safety rules governing Japanese nuclear power companies, and this included insufficient protection against tsunamis.[117]

2012 yilgi hisobot Iqtisodchi said: "The reactors at Fukushima were of an old design. The risks they faced had not been well analysed. The operating company was poorly regulated and did not know what was going on. The operators made mistakes. The representatives of the safety inspectorate fled. Some of the equipment failed. The establishment repeatedly played down the risks and suppressed information about the movement of the radioactive plume, so some people were evacuated from more lightly to more heavily contaminated places".[118]

Ning dizaynerlari Fukusima I atom stansiyasi reactors did not anticipate that a tsunami generated by an earthquake would disable the backup systems that were supposed to stabilize the reactor after the earthquake.[2] Nuclear reactors are such "inherently complex, tightly coupled systems that, in rare, emergency situations, cascading interactions will unfold very rapidly in such a way that human operators will be unable to predict and master them".[3]

Lacking electricity to pump water needed to cool the atomic core, engineers vented radioactive steam into the atmosphere to release pressure, leading to a series of explosions that blew out concrete walls around the reactors. Radiation readings spiked around Fukushima as the disaster widened, forcing the evacuation of 200,000 people. There was a rise in radiation levels on the outskirts of Tokyo, with a population of 30 million, 135 miles (210 kilometers) to the south.[43]

Back-up diesel generators that might have averted the disaster were positioned in a basement, where they were quickly overwhelmed by waves. The cascade of events at Fukushima had been predicted in a report published in the U.S. several decades ago:[43]

The 1990 report by the U.S. Nuclear Regulatory Commission, an independent agency responsible for safety at the country’s power plants, identified earthquake-induced diesel generator failure and power outage leading to failure of cooling systems as one of the “most likely causes” of nuclear accidents from an external event.[43]

The report was cited in a 2004 statement by Japan's Nuclear and Industrial Safety Agency, but it seems adequate measures to address the risk were not taken by TEPCO. Katsuhiko Ishibashi, a seismology professor at Kobe universiteti, has said that Japan's history of nuclear accidents stems from an overconfidence in plant engineering. In 2006, he resigned from a government panel on nuclear reactor safety, because the review process was rigged and “unscientific”.[43]

Ga ko'ra Xalqaro atom energiyasi agentligi, Japan "underestimated the danger of tsunamis and failed to prepare adequate backup systems at the Fukushima Daiichi nuclear plant". This repeated a widely held criticism in Japan that "collusive ties between regulators and industry led to weak oversight and a failure to ensure adequate safety levels at the plant".[116] The IAEA also said that the Fukushima disaster exposed the lack of adequate backup systems at the plant. Once power was completely lost, critical functions like the cooling system shut down. Three of the reactors "quickly overheated, causing meltdowns that eventually led to explosions, which hurled large amounts of radioactive material into the air".[116]

Luiza Frechette va Trevor Findlay have said that more effort is needed to ensure nuclear safety and improve responses to accidents:

The multiple reactor crises at Japan's Fukushima nuclear power plant reinforce the need for strengthening global instruments to ensure nuclear safety worldwide. The fact that a country that has been operating nuclear power reactors for decades should prove so alarmingly improvisational in its response and so unwilling to reveal the facts even to its own people, much less the International Atomic Energy Agency, is a reminder that nuclear safety is a constant work-in-progress.[119]

Devid Lochbaum, chief nuclear safety officer with the Xavotirga tushgan olimlar ittifoqi, has repeatedly questioned the safety of the Fukushima I Plant's General Electric Mark 1 reactor design, which is used in almost a quarter of the United States' nuclear fleet.[120]

A report from the Japanese Government to the IAEA says the "nuclear fuel in three reactors probably melted through the inner containment vessels, not just the core". The report says the "inadequate" basic reactor design — the Mark-1 model developed by General Electric — included "the venting system for the containment vessels and the location of spent fuel cooling pools high in the buildings, which resulted in leaks of radioactive water that hampered repair work".[121]

Following the Fukushima emergency, the European Union decided that reactors across all 27 member nations should undergo safety tests.[122]

Ga binoan UBS AG, the Fukushima I nuclear accidents are likely to hurt the nuclear power industry's credibility more than the Chernobil fojiasi 1986 yilda:

The accident in the former Soviet Union 25 years ago 'affected one reactor in a totalitarian state with no safety culture,' UBS analysts including Per Lekander and Stephen Oldfield wrote in a report today. 'At Fukushima, four reactors have been out of control for weeks – casting doubt on whether even an advanced economy can master nuclear safety.'[123]

The Fukushima accident exposed some troubling nuclear safety issues:[124]

Despite the resources poured into analyzing crustal movements and having expert committees determine earthquake risk, for instance, researchers never considered the possibility of a magnitude-9 earthquake followed by a massive tsunami. The failure of multiple safety features on nuclear power plants has raised questions about the nation's engineering prowess. Government flip-flopping on acceptable levels of radiation exposure confused the public, and health professionals provided little guidance. Facing a dearth of reliable information on radiation levels, citizens armed themselves with dosimeters, pooled data, and together produced radiological contamination maps far more detailed than anything the government or official scientific sources ever provided.[124]

As of January 2012, questions also linger as to the extent of damage to the Fukushima plant caused by the earthquake even before the tsunami hit. Any evidence of serious quake damage at the plant would "cast new doubt on the safety of other reactors in quake-prone Japan".[125]

Two government advisers have said that "Japan's safety review of nuclear reactors after the Fukushima disaster is based on faulty criteria and many people involved have conflicts of interest". Hiromitsu Ino, Professor Emeritus at the University of Tokyo, says"The whole process being undertaken is exactly the same as that used previous to the Fukushima Dai-Ichi accident, even though the accident showed all these guidelines and categories to be insufficient".[126]

In March 2012, Prime Minister Yoshihiko Noda acknowledged that the Japanese government shared the blame for the Fukushima disaster, saying that officials had been blinded by a false belief in the country's "technological infallibility", and were all too steeped in a "safety myth".[127]

Other accidents

Serious nuclear and radiation accidents include the Chalk River accidents (1952, 1958 & 2008), Mayak disaster (1957), Shisha yong'in (1957), SL-1 accident (1961), Sovet dengiz osti kemasi K-19 accident (1961), Uch Mile orolidagi avariya (1979), Cherkov Rokidagi uran tegirmonining to'kilishi (1979), Sovet dengiz osti kemasi K-431 accident (1985), Goniyaia avariyasi (1987), Zaragoza radiotherapy accident (1990), Costa Rica radiotherapy accident (1996), Tokaymura yadroviy halokati (1999), Sellafield THORP leak (2005) va Flerus IRE kobalt-60 spill (2006).[128][129]

Sog'likka ta'siri

Japan towns, villages, and cities around the Fukushima Daiichi atom stansiyasi. The 20km and 30km areas had evacuation and sheltering orders, and additional administrative districts that had an evacuation order are highlighted.

Four hundred and thirty-seven nuclear power stations are presently in operation but, unfortunately, five major yadro hodisalari have occurred in the past. These accidents occurred at Kishtim (1957), Shisha oyna (1957), Uch mil oroli (1979), Chernobil (1986) va Fukusima (2011). Hisobot Lanset says that the effects of these accidents on individuals and societies are diverse and enduring:[130]

"Accumulated evidence about radiation health effects on atomic bomb survivors and other radiation-exposed people has formed the basis for national and international regulations about radiation protection. However, past experiences suggest that common issues were not necessarily physical health problems directly attributable to radiation exposure, but rather psychological and social effects. Additionally, evacuation and long-term displacement created severe health-care problems for the most vulnerable people, such as hospital inpatients and elderly people."[130]

In spite of accidents like these, studies have shown that nuclear deaths are mostly in uran qazib olish and that nuclear energy has generated far fewer deaths than the high pollution levels that result from the use of conventional fossil fuels.[131] However, the nuclear power industry relies on uran qazib olish, which itself is a hazardous industry, with many accidents and fatalities.[132]

Jurnalist Stefani Kuk says that it is not useful to make comparisons just in terms of number of deaths, as the way people live afterwards is also relevant, as in the case of the 2011 yil Yaponiyaning yadroviy baxtsiz hodisalari:[133]

"You have people in Japan right now that are facing either not returning to their homes forever, or if they do return to their homes, living in a contaminated area for basically ever... It affects millions of people, it affects our land, it affects our atmosphere ... it's affecting future generations ... I don't think any of these great big massive plants that spew pollution into the air are good. But I don't think it's really helpful to make these comparisons just in terms of number of deaths".[133]

The Fukushima accident forced more than 80,000 residents to evacuate from neighborhoods around the plant.[121]

Tomonidan so'rovnoma Iukat, Fukusima local government obtained responses from some 1,743 people who have evacuated from the village, which lies within the emergency evacuation zone around the crippled Fukushima Daiichi Plant. Bu shuni ko'rsatadiki, ko'plab aholi yadroviy inqiroz va ofatdan oldin yashagan hayotiga qaytishga qodir emasligi sababli ortib borayotgan umidsizlik va beqarorlikni boshdan kechirmoqda. Sixty percent of respondents stated that their health and the health of their families had deteriorated after evacuating, while 39.9 percent reported feeling more irritated compared to before the disaster.[134]

"Summarizing all responses to questions related to evacuees' current family status, one-third of all surveyed families live apart from their children, while 50.1 percent live away from other family members (including elderly parents) with whom they lived before the disaster. The survey also showed that 34.7 percent of the evacuees have suffered salary cuts of 50 percent or more since the outbreak of the nuclear disaster. A total of 36.8 percent reported a lack of sleep, while 17.9 percent reported smoking or drinking more than before they evacuated."[134]

Chemical components of the radioactive waste may lead to cancer.For example, Iodine 131 was released along with the radioactive waste when Chernobil fojiasi va Fukushima disasters sodir bo'ldi. It was concentrated in leafy vegetation after absorption in the soil. It also stays in animals’ milk if the animals eat the vegetation. When Iodine 131 enters the human body, it migrates to the thyroid gland in the neck and can cause thyroid cancer.[135]

Other elements from nuclear waste can lead to cancer as well. Masalan, Stronsiyum 90 causes breast cancer and leukemia, Plutoniy 239 causes liver cancer.[136]

Improvements to nuclear fission technologies

Redesigns of fuel pellets and cladding are being undertaken which can further improve the safety of existing power plants.

Newer reactor designs intended to provide increased safety have been developed over time. These designs include those that incorporate passiv xavfsizlik and Small Modular Reactors. While these reactor designs "are intended to inspire trust, they may have an unintended effect: creating distrust of older reactors that lack the touted safety features".[137]

The next nuclear plants to be built will likely be Generation III or III+ designs, and a few such are already in operation in Yaponiya. Generation IV reactors would have even greater improvements in safety. These new designs are expected to be passively safe or nearly so, and perhaps even inherently safe (kabi PBMR dizaynlar).

Some improvements made (not all in all designs) are having three sets of emergency diesel generators and associated emergency core cooling systems rather than just one pair, having quench tanks (large coolant-filled tanks) above the core that open into it automatically, having a double containment (one qamoqxona binosi inside another), etc.

However, safety risks may be the greatest when nuclear systems are the newest, and operators have less experience with them. Yadro muhandisi Devid Lochbaum explained that almost all serious nuclear accidents occurred with what was at the time the most recent technology. He argues that "the problem with new reactors and accidents is twofold: scenarios arise that are impossible to plan for in simulations; and humans make mistakes".[81] As one director of a U.S. research laboratory put it, "fabrication, construction, operation, and maintenance of new reactors will face a steep learning curve: advanced technologies will have a heightened risk of accidents and mistakes. The technology may be proven, but people are not".[81]

Rivojlanayotgan davlatlar

There are concerns about developing countries "rushing to join the so-called nuclear renaissance without the necessary infrastructure, personnel, regulatory frameworks and safety culture".[119] Some countries with nuclear aspirations, like Nigeria, Kenya, Bangladesh and Venezuela, have no significant industrial experience and will require at least a decade of preparation even before breaking ground at a reactor site.[119]

The speed of the nuclear construction program in China has raised safety concerns. The challenge for the government and nuclear companies is to "keep an eye on a growing army of contractors and subcontractors who may be tempted to cut corners".[138] China has asked for international assistance in training more nuclear power plant inspectors.[138]

Nuclear security and terrorist attacks

Atom elektr stantsiyalari, civilian research reactors, certain naval fuel facilities, uranni boyitish plants, and fuel fabrication plants, are vulnerable to attacks which could lead to widespread radioaktiv ifloslanish. The attack threat is of several general types: commando-like ground-based attacks on equipment which if disabled could lead to a reactor yadro erishi or widespread dispersal of radioactivity; and external attacks such as an aircraft crash into a reactor complex, or cyber attacks.[139]

The United States 9/11 Commission has said that nuclear power plants were potential targets originally considered for the 2001 yil 11 sentyabr hujumlar. If terrorist groups could sufficiently damage safety systems to cause a yadro erishi at a nuclear power plant, and/or sufficiently damage spent fuel pools, such an attack could lead to widespread radioactive contamination. The Amerika olimlari federatsiyasi have said that if nuclear power use is to expand significantly, nuclear facilities will have to be made extremely safe from attacks that could release massive quantities of radioactivity into the community. New reactor designs have features of passiv xavfsizlik, which may help. In the United States, the NRC carries out "Force on Force" (FOF) exercises at all Nuclear Power Plant (NPP) sites at least once every three years.[139]

Yadro reaktorlari become preferred targets during harbiy mojaro and, over the past three decades, have been repeatedly attacked during military air strikes, occupations, invasions and campaigns.[25] Various acts of fuqarolik itoatsizligi since 1980 by the peace group Plowshares have shown how nuclear weapons facilities can be penetrated, and the groups actions represent extraordinary breaches of security at yadro qurollari Qo'shma Shtatlardagi o'simliklar. The Milliy yadro xavfsizligi boshqarmasi has acknowledged the seriousness of the 2012 Plowshares action. Yadro qurolini tarqatmaslik policy experts have questioned "the use of private contractors to provide security at facilities that manufacture and store the government's most dangerous military material".[140] Yadro qurollari bo'yicha materiallar qora bozor global muammo,[141][142] va kichik yadro qurolini a tomonidan portlashi mumkinligidan xavotir mavjud jangari guruh katta shaharda, hayoti va mol-mulki katta yo'qotish bilan.[143][144] Stuxnet a kompyuter qurti discovered in June 2010 that is believed to have been created by the Qo'shma Shtatlar va Isroil to attack Iran's nuclear facilities.[145]

Nuclear fusion research

Yadro sintezi power is a developing technology still under research. It relies on fusing rather than fissioning (splitting) atomic nuclei, using very different processes compared to current nuclear power plants. Nuclear fusion reactions have the potential to be safer and generate less radioactive waste than fission.[146][147] These reactions appear potentially viable, though technically quite difficult and have yet to be created on a scale that could be used in a functional power plant. Fusion power has been under theoretical and experimental investigation since the 1950s.

Qurilishi Xalqaro termoyadroviy eksperimental reaktor facility began in 2007, but the project has run into many delays and byudjetdan oshib ketish. The facility is now not expected to begin operations until the year 2027 – 11 years after initially anticipated.[148] A follow on commercial nuclear termoyadroviy quvvat stantsiya, DEMO, has been proposed.[149][150] There is also suggestions for a power plant based upon a different fusion approach, that of an Inertial fusion power plant.

Fusion powered electricity generation was initially believed to be readily achievable, as fission power had been. However, the extreme requirements for continuous reactions and plasma containment led to projections being extended by several decades. In 2010, more than 60 years after the first attempts, commercial power production was still believed to be unlikely before 2050.[149]

More stringent safety standards

Matthew Bunn, the former US Fan va texnologiyalar idorasi Policy adviser, and Heinonen, the former Deputy Director General of the IAEA, have said that there is a need for more stringent nuclear safety standards, and propose six major areas for improvement:[97]

  • operators must plan for events beyond design bases;
  • more stringent standards for protecting nuclear facilities against terrorist sabotage;
  • a stronger international emergency response;
  • international reviews of security and safety;
  • binding international standards on safety and security; va
  • international co-operation to ensure regulatory effectiveness.

Coastal nuclear sites must also be further protected against rising sea levels, storm surges, flooding, and possible eventual "nuclear site islanding".[97]

Shuningdek qarang

Adabiyotlar

  1. ^ IAEA safety Glossary – Version 2.0 September 2006
  2. ^ a b v Phillip Lipscy, Kenji Kushida, and Trevor Incerti. 2013 yil. "The Fukushima Disaster and Japan’s Nuclear Plant Vulnerability in Comparative Perspective." Atrof-muhit fanlari va texnologiyalari 47 (May), 6082–6088.
  3. ^ a b Hugh Gusterson (16 March 2011). "The lessons of Fukushima". Atom olimlari byulleteni. Arxivlandi asl nusxasi 2013 yil 6-iyun kuni.
  4. ^ a b Diaz Maurin, François (26 March 2011). "Fukushima: Consequences of Systemic Problems in Nuclear Plant Design". Iqtisodiy va siyosiy haftalik. 46 (13): 10–12.
  5. ^ a b v d e f Adam Piore (June 2011). "Nuclear energy: Planning for the Black Swan p.32". Ilmiy Amerika. Olingan 2014-05-15.
  6. ^ "Nuclear Terrorism: Frequently Asked Questions". Belfer ilmiy va xalqaro aloqalar markazi. 2007 yil 26 sentyabr. Iqtibos jurnali talab qiladi | jurnal = (Yordam bering)
  7. ^ Vienna International Centre (March 30, 2011). "About IAEA: The "Atoms for Peace" Agency". iaea.org.
  8. ^ a b Stephen Kurczy (March 17, 2011). "Japan nuclear crisis sparks calls for IAEA reform". CSMonitor.com.
  9. ^ IAEA Convention on Nuclear Safety
  10. ^ "Vienna Declaration on Nuclear Safety" (PDF).
  11. ^ Qiyomat kuni mashinasi, by Martin Cohen and Andrew Mckillop, Palgrave 2012, page 74
  12. ^ a b Qiyomat kuni mashinasi, by Martin Cohen and Andrew Mckillop, Palgrave 2012, page 72
  13. ^ NRC haqida, AQSh yadroviy tartibga solish komissiyasi, Retrieved 2007-06-01.
  14. ^ Bizning boshqaruv qonunchiligimiz, AQSh yadroviy tartibga solish komissiyasi, Retrieved 2007-06-01.
  15. ^ Sog'liqni saqlash va xavfsizlik Arxivlandi 2009-11-12 da Orqaga qaytish mashinasi http://www.australia.gov.au
  16. ^ Radiatsiyadan himoya Arxivlandi 2010-01-03 da Orqaga qaytish mashinasi http://www.arpansa.gov.au
  17. ^ a b Jan Willem Storm van Leeuwen (2008). Nuclear power – the energy balance
  18. ^ Stefani Kuk (2009). Mortal Hands: Yadro asrining ogohlantiruvchi tarixi, Black Inc., p. 280.
  19. ^ Perrow, C. (1982), 'Prezidentning Komissiyasi va Oddiy Baxtsiz hodisalar', Sils, D., Wolf, C. and Shelanski, V. (Eds), Uch mil orolidagi baxtsiz hodisa: inson o'lchovlari, Westview, Boulder, 173-184 betlar.
  20. ^ Pidgeon, N. (2011). "In retrospect: Normal Accidents". Tabiat. 477 (7365): 404–405. Bibcode:2011Natur.477..404P. doi:10.1038/477404a.
  21. ^ "Nuclear Power".
  22. ^ Globalsecurity.org: Nuclear Power Plants: Vulnerability to Terrorist Attack p. 3.
  23. ^ Safety of Nuclear Power Reactors, World Nuclear Association, http://www.world-nuclear.org/info/inf06.html
  24. ^ Matthew Wald (June 15, 2011). "U.S. Reactors Unprepared for Total Power Loss, Report Suggests". Nyu-York Tayms.
  25. ^ a b v Benjamin K. Sovacool (2011). Yadro energetikasining kelajagi uchun bahslashish: A Critical Global Assessment of Atomic Energy, World Scientific, p. 192.
  26. ^ U.S. NRC: "Nuclear Security – Five Years After 9/11". Kirish 23 iyul 2007 yil
  27. ^ "N.B. nuclear plant reviewing bids for two new light-armoured vehicles". Milliy pochta. 2017 yil 7-iyul. Olingan 7 iyul 2017.
  28. ^ Threat Assessment: U.S. Nuclear Plants Near Airports May Be at Risk of Airplane Attack Arxivlandi 2010-11-10 da Orqaga qaytish mashinasi, Global Security Newswire, June 11, 2003.
  29. ^ Newtan, Samuel Upton (2007). Nuclear War 1 and Other Major Nuclear Disasters of the 20th Century, AuthorHouse, p.146.
  30. ^ "STATEMENT FROM CHAIRMAN DALE KLEIN ON COMMISSION'S AFFIRMATION OF THE FINAL DBT RULE". Yadro nazorati bo'yicha komissiya. Olingan 2007-04-07.
  31. ^ "The Nuclear Fuel Cycle". Information and Issue Briefs. Butunjahon yadro assotsiatsiyasi. 2005 yil. Olingan 2006-11-10.
  32. ^ Lewis Z Koch (2004). "Dirty Bomber? Dirty Justice". Atom olimlari byulleteni. Olingan 2006-11-10.
  33. ^ a b Julia Mareike Neles, Christoph Pistner (Hrsg.), Kernenergie. Eine Technik für die Zukunft?, Berlin – Heidelberg 2012, S. 114 f.
  34. ^ a b Julia Mareike Neles, Christoph Pistner (Hrsg.), Kernenergie. Eine Technikkk für die Zukunft?, Berlin – Heidelberg 2012, S. 115.
  35. ^ Manfred Grathwohl, Energieversorgung, Berlin – New York 1983, S. 429.
  36. ^ Terroranschlag auf Atomkraftwerk Biblis würde Berlin bedrohen. In: Der Spiegel
  37. ^ In: Der Spiegel: Biblis nicht gegen Flugzeugabsturz geschützt
  38. ^ Tihange-Mitarbeiter gesperrt, Terroristen spähen Wissenschaftler aus, Axener Zeitung, 24.3.2016
  39. ^ Wolf-Georg Schärf, Europäisches Atomrecht. Recht der Nuklearenergie Berlin – Boston 2012, S. 1.
  40. ^ spiegel.de: Experten warnen vor neuen Terrorgefahren durch Atom-Comeback
  41. ^ a b Dr. Frauke Urban and Dr. Tom Mitchell 2011. Climate change, disasters and electricity generation Arxivlandi 2012 yil 20 sentyabr, soat Orqaga qaytish mashinasi. London: Chet elda rivojlanish instituti va Rivojlanishni o'rganish instituti
  42. ^ COMMUNIQUE N ° 7 - INCIDENT SUR LE SAYT DU BLAYAIS Arxivlandi 2013 yil 27 may, soat Orqaga qaytish mashinasi ASN, published 1999-12-30, accessed 2011-03-22
  43. ^ a b v d e Jason Clenfield (March 17, 2011). "Japan Nuclear Disaster Caps Decades of Faked Reports, Accidents". Bloomberg Businessweek.[doimiy o'lik havola ]
  44. ^ ABC News. Strong Quake Rocks Northwestern Japan. July 16, 2007.
  45. ^ Sinxua yangiliklari. Two die, over 200 injured in strong quake in Japan Arxivlandi 2012-10-09 da Orqaga qaytish mashinasi. July 16, 2007.
  46. ^ Genpatsu-Shinsai: Catastrophic Multiple Disaster of Earthquake and Quake-induced Nuclear Accident Anticipated in the Japanese Islands (Abstract), Katsuhiko Ishibashi, 23rd. General Assembly of IUGG, 2003, Sapporo, Japan, accessed 2011-03-28
  47. ^ Yoichi Funabashi and Kay Kitazawa (March 1, 2012). "Fukushima in review: A complex disaster, a disastrous response". Atom olimlari byulleteni.
  48. ^ "Glossary: Safety-related". Olingan 2011-03-20.
  49. ^ "What you can do to protect yourself: Be Informed". Nuclear Power Plants | RadTown USA | AQSh EPA. Qo'shma Shtatlar atrof-muhitni muhofaza qilish agentligi. Olingan 12 mart, 2012.
  50. ^ a b Yadro axborot-resurs xizmati (NIRS): "ROUTINE RADIOACTIVE RELEASES FROM NUCLEAR REACTORS – IT DOESN'T TAKE AN ACCIDENT". March 2015. Archived from the original on May 14, 2011. Olingan 2016-08-22.CS1 maint: BOT: original-url holati noma'lum (havola)
  51. ^ a b "Nuclear Power: During normal operations, do commercial nuclear power plants release radioactive material?". Radiation and Nuclear Power | Radiation Information and Answers. Radiation Answers. Olingan 12 mart, 2012.
  52. ^ "Radiation Dose". Factsheets & FAQs: Radiation in Everyday Life. Xalqaro atom energiyasi agentligi (IAEA). Arxivlandi asl nusxasi 2013 yil 19 oktyabrda. Olingan 12 mart, 2012.
  53. ^ "What happens to radiation produced by a plant?". NRC: Frequently Asked Questions (FAQ) About Radiation Protection. Yadro nazorati bo'yicha komissiya. Olingan 12 mart, 2012.
  54. ^ "Is radiation exposure from a nuclear power plant always fatal?". NRC: Frequently Asked Questions (FAQ) About Radiation Protection. Yadro nazorati bo'yicha komissiya. Olingan 12 mart, 2012.
  55. ^ "UNSCEAR 2008 Report to the General Assembly" (PDF). Birlashgan Millatlar Tashkilotining Atom radiatsiyasining ta'siri bo'yicha ilmiy qo'mitasi. 2008 yil.
  56. ^ Hiroko Tabuchi (March 3, 2012). "Japanese Prime Minister Says Government Shares Blame for Nuclear Disaster". The New York Times. Olingan 2012-04-13.
  57. ^ Yoichi Funabashi (March 11, 2012). "The End of Japanese Illusions". Nyu-York Tayms. Olingan 2012-04-13.
  58. ^ Wang, Qiang, Xi Chen, and Xu Yi-Chong. "Accident like the Fukushima Unlikely in a Country with Effective Nuclear Regulation: Literature Review and Proposed Guidelines." Renewable and Sustainable Energy Reviews 16.1 (2012): 126–46. Internet. 3 July 2016. <http://www.egi.ac.cn/xwzx/kydt/201211/W020121101676826557345.pdf >.
  59. ^ "Kärnfrågan". Fokus (shved tilida). 2015-02-06. Olingan 2020-06-08.
  60. ^ "Ukraine further diversifies nuclear fuel supply with Canadian deal". www.unian.info. Olingan 2020-06-08.
  61. ^ a b v "What is Nuclear Waste?". What is Nuclear?.
  62. ^ "Fission 235U". US Nuclear Data Program. Arxivlandi asl nusxasi 2014-06-06 da.
  63. ^ "Fission 233U". US Nuclear Data Program. Arxivlandi asl nusxasi 2013-10-09 kunlari.
  64. ^ "Fission 239Pu". US Nuclear Data Program. Arxivlandi asl nusxasi 2013-10-09 kunlari.
  65. ^ "131I". US Nuclear Data Program. Arxivlandi asl nusxasi on 2014-02-28.
  66. ^ "129I". US Nuclear Data Program. Arxivlandi asl nusxasi on 2014-02-28.
  67. ^ "Natural Radioactivity". Aydaho shtati universiteti.
  68. ^ "Environmental Surveillance, Education and Research Program". Idaho National Laboratory. Arxivlandi asl nusxasi 2008-11-21 kunlari. Olingan 2009-01-05.
  69. ^ Vandenbosch 2007, p. 21.
  70. ^ Ojovan, M. I .; Lee, W.E. (2005). An Introduction to Nuclear Waste Immobilisation. Amsterdam: Elsevier Science Publishers. p. 315. ISBN  978-0-08-044462-8.
  71. ^ Brown, Paul (2004-04-14). "Shoot it at the sun. Send it to Earth's core. What to do with nuclear waste?". Guardian. London.
  72. ^ National Research Council (1995). Technical Bases for Yucca Mountain Standards. Vashington, Kolumbiya okrugi: Milliy akademiya matbuoti. p. 91. ISBN  978-0-309-05289-4.
  73. ^ "The Status of Nuclear Waste Disposal". Amerika jismoniy jamiyati. 2006 yil yanvar. Olingan 2008-06-06.
  74. ^ "Yucca Mountain (Nevada) uchun sog'liqni saqlash va atrof-muhit radiatsiyasini himoya qilish standartlari; taklif qilingan qoida" (PDF). Qo'shma Shtatlar atrof-muhitni muhofaza qilish agentligi. 2005-08-22. Olingan 2008-06-06.
  75. ^ Sevior M. (2006). "Avstraliyada atom energetikasi masalalari". Xalqaro ekologik tadqiqotlar jurnali. 63 (6): 859–872. doi:10.1080/00207230601047255. S2CID  96845138.
  76. ^ "Torium resurslari noyob elementlarda" (PDF). Arxivlandi asl nusxasi (PDF) 2012-12-18.
  77. ^ Amerika Geofizika Ittifoqi, Kuzgi yig'ilish 2007 yil, avtoreferat # V33A-1161. Qit'a qobig'ining massasi va tarkibi
  78. ^ Fanlararo ilmiy sharhlar 23: 193–203; 1998. Doktor Bernard L. Koen, Pitsburg universiteti. Yuqori darajadagi chiqindilarni yo'q qilish muammosining istiqbollari
  79. ^ a b v M.V. Ramana. Atom energetikasi: yaqin kelajakdagi texnologiyalarning iqtisodiy, xavfsizlik, sog'liqni saqlash va atrof-muhit muammolari, Atrof muhit va resurslarni yillik sharhi, 2009. 34, 139-140 betlar.
  80. ^ Devid Fikling (2011 yil 20-aprel). "Areva Fukusimani yadroviy sanoat uchun katta uyg'onish chaqirig'ini aytmoqda". Fox Business. Arxivlandi asl nusxasi 2011 yil 1-iyulda.
  81. ^ a b v Benjamin K. Sovacool. Osiyoda atom energiyasi va qayta tiklanadigan elektr energiyasini tanqidiy baholash, Zamonaviy Osiyo jurnali, Jild 40, № 3, 2010 yil avgust, p. 381.
  82. ^ a b v d e f Deklan Butler (2011 yil 21 aprel). "Reaktorlar, rezidentlar va xavf". Tabiat. 472 (7344): 400–1. doi:10.1038 / 472400a. PMID  21525903. S2CID  4371109.
  83. ^ "Shimoliy Karolina ustida AQSh atom bombasini deyarli portlatdi - maxfiy hujjat". Guardian. 2013 yil 20 sentyabr.
  84. ^ "Sovuq urushning yo'qolgan atom bombalari". Der Spiegel. 2008 yil 14-noyabr. Arxivlandi asl nusxasidan 2019 yil 27 iyunda. Olingan 20 avgust 2019.
  85. ^ Yorilish materiallari bo'yicha xalqaro panel (2010 yil sentyabr). "Atom energiyasining noaniq kelajagi" (PDF). Tadqiqot hisoboti 9. p. 1.
  86. ^ Kennett Benedikt (2011 yil 13 oktyabr). "Atom energiyasi bilan o'lim taqiqlanishi". Atom olimlari byulleteni.
  87. ^ Devid Xinds, Kris Masla (2006 yil yanvar). "Yangi avlod atom energetikasi: ESBWR" (PDF). Yadro yangiliklari. ans.org. Arxivlandi asl nusxasi (PDF) 2010-07-04 da. Olingan 2015-02-07.
  88. ^ Stefani Kuk (2011 yil 19 mart). "Atom energetikasi sinovda". CNN.com.
  89. ^ a b Kennett Benedikt (2011 yil 26 mart). "Yo'l tutilmadi: Fukusima bizni yadro shaffofligi yo'liga qo'yishi mumkinmi?". Atom olimlari byulleteni. Arxivlandi asl nusxasi 2011 yil 11 mayda.
  90. ^ "Germaniya va Frantsiyadagi yadroga qarshi namoyishlar". BBC yangiliklari. 2011 yil 25 aprel.
  91. ^ Pandoraning qutisi, Atom uchun - Adam Kurtis
  92. ^ Lovins, Amori B. va Prays, Jon H. (1975). Yadro bo'lmagan fyucherslar: axloqiy energiya strategiyasi uchun masala (Kembrij, Mass.: Ballinger Publishing Company, 1975. xxxii + 223pp.) ISBN  0-88410-602-0, ISBN  0-88410-603-9).
  93. ^ Vaynberg, Alvin M. (1976 yil dekabr). "Kitoblarni ko'rib chiqish. Yadrodan tashqari fyucherslar: axloqiy energiya strategiyasi uchun masala". Energiya siyosati. 4 (4): 363–366. doi:10.1016/0301-4215(76)90031-8. ISSN  0301-4215.
  94. ^ Yadro bo'lmagan fyucherslar, xix-xxi-betlar.
  95. ^ Brayan Vang (2011 yil 16 mart). "Elektr energiyasini ishlab chiqarishda o'lim".
  96. ^ Zia Mian va Aleksandr Glaser (2006 yil iyun). "Yadro bilan ishlaydigan olomonda hayot" (PDF). INESAP Axborot byulleteni № 26.
  97. ^ a b v Evropa atrof-muhit agentligi (2013 yil 23-yanvar). "Erta ogohlantirishlardan kech darslar: ilm-fan, ehtiyotkorlik, yangilik: to'liq hisobot". p. 28.480.
  98. ^ Kristin Shrader-Frechette (2011 yil 19-avgust). "Yadro bo'linishidan ko'ra arzonroq va xavfsizroq alternativalar". Atom olimlari byulleteni. Arxivlandi asl nusxasi 2012-01-21.
  99. ^ Arjun Maxijani (2011 yil 21-iyul). "Fukusima fojiasi atom energiyasining mantiqiy emasligini namoyish etadi". Atom olimlari byulleteni. Arxivlandi asl nusxasi 2012-01-21.
  100. ^ a b "Hanford sayt: Hanford haqida umumiy ma'lumot". Amerika Qo'shma Shtatlari Energetika vazirligi. Arxivlandi asl nusxasi 2012-05-11. Olingan 2012-02-13.
  101. ^ "Science Watch: yadroviy" Arsenal "ning o'sishi". The New York Times. 1987 yil 28 aprel. Olingan 2007-01-29.
  102. ^ "Xenford va radiatsiya sog'lig'iga ta'siri haqida umumiy ma'lumot". Hanford sog'liqni saqlash bo'yicha axborot tarmog'i. Arxivlandi asl nusxasi 2010-01-06 da. Olingan 2007-01-29.
  103. ^ "Xenfordning tezkor faktlari". Vashington ekologiya departamenti. Arxivlandi asl nusxasi 2008-06-24 da. Olingan 2010-01-19.
  104. ^ "Xenford faktlari". psr.org. Arxivlandi asl nusxasi 2015-02-07 da. Olingan 2015-02-07.
  105. ^ Stang, Jon (2010 yil 21-dekabr). "Xayfordda radioaktivlikning o'sishi to'siq bo'ldi". Sietl Post-Intelligencer.
  106. ^ Xarden, Bleyn; Dan Morgan (2007 yil 2-iyun). "Yadro chiqindilari bo'yicha munozaralar kuchaymoqda". Vashington Post. p. A02. Olingan 2007-01-29.
  107. ^ Dininny, Shannon (2007 yil 3-aprel). "AQSh Xanforddan zararni baholaydi". Sietl Post-Intelligencer. Associated Press. Olingan 2007-01-29.
  108. ^ Shnayder, Keyt (1989 yil 28-fevral). "Yadro poligonida tozalash bo'yicha kelishuv". The New York Times. Olingan 2008-01-30.
  109. ^ Qora, Richard (2011-04-12). "Fukusima: Chernobil kabi yomonmi?". Bbc.co.uk. Olingan 2011-08-20.
  110. ^ Bilan intervyulardan Mixail Gorbachyov, Xans Bliks va Vassili Nesterenko. Chernobil jangi. Discovery kanali. Tegishli video joylar: 31:00, 1:10:00.
  111. ^ Kagarlitskiy, Boris (1989). "Qayta qurish: o'zgarishlarning dialektikasi". Yilda Meri Kaldor; Jerald Xolden; Richard A. Falk (tahr.). Yangi tinchlanish: Sharq va G'arb munosabatlarini qayta ko'rib chiqish. Birlashgan Millatlar Universiteti matbuoti. ISBN  978-0-86091-962-9.
  112. ^ "MAQATE hisoboti". Fokusda: Chernobil. Xalqaro atom energiyasi agentligi. Arxivlandi asl nusxasi 2007-12-17 kunlari. Olingan 2006-03-29.
  113. ^ Hallenbek, Uilyam H (1994). Radiatsiyadan himoya. CRC Press. p. 15. ISBN  978-0-87371-996-4. Hozirga qadar 237 ta o'tkir nurlanish kasalligi va 31 o'lim holatlari qayd etilgan.
  114. ^ Igor Koudrik va Aleksandr Nikitin (2011 yil 13-dekabr). "Ikkinchi hayot: Rossiyaning atom elektr stantsiyalari uchun umrni uzaytirish xavfsizligi shubhali". Atom olimlari byulleteni. Arxivlandi asl nusxasi 2013 yil 25 martda. Olingan 4 aprel 2013.
  115. ^ Richard Shiffman (2013 yil 12 mart). "Ikki yildan beri Amerika Fukusima yadroviy falokatidan saboq olmadi". Guardian. London.
  116. ^ a b v Martin Fakler (2011 yil 1-iyun). "Hisobotda Yaponiyada tsunami xavfi kam baholanganligi aniqlandi". Nyu-York Tayms.
  117. ^ "Yadro xavfsizligi bo'yicha boshliq Fukusima inqiroziga olib keladigan yumshoq qoidalarni aytmoqda". Bloomberg. 2012 yil 16 fevral.[doimiy o'lik havola ]
  118. ^ "Portlashlar sodir bo'ladi: Yadro zavodlari faqat ularning xavfi to'g'risida doimo xavotirlansagina xavfsizligini ta'minlashi mumkin". Iqtisodchi. 2012 yil 10 mart.
  119. ^ a b v Luiza Fréhette va Trevor Findlay (2011 yil 28 mart). "Yadro xavfsizligi - bu dunyo muammosi". Ottava fuqarosi.[doimiy o'lik havola ]
  120. ^ Xanna Northey (2011 yil 28 mart). "Yaponiya yadroviy reaktorlari, AQSh xavfsizligi bu hafta Kapitoliy tepaligida markaziy sahnaga chiqadi". Nyu-York Tayms.
  121. ^ a b "Yaponiya zilziladan keyingi yadroviy falokatga tayyor emasligini aytmoqda". Los Anjeles Tayms. 2011 yil 8 iyun. Arxivlangan asl nusxasi 2011 yil 8 iyunda.
  122. ^ Jeyms Kanter (2011 yil 25 mart). "Evropa yadroviy reaktorlarning xavfsizligini sinovdan o'tkazadi". Nyu-York Tayms.
  123. ^ Jeyms Paton (2011 yil 4 aprel). "Fukusima inqirozi Chernobilga qaraganda atom energiyasi uchun yomonroq, deydi UBS". Bloomberg Businessweek. Arxivlandi asl nusxasi 2011-05-15.
  124. ^ a b Dennis Normil (2011 yil 28-noyabr). "Fukusima ofatining uyg'onishida Yaponiya olimlari jamoat ishonchini qanday tiklash haqida o'ylashadi". Ilm-fan. Arxivlandi asl nusxasi 2011 yil 28-noyabrda.
  125. ^ Xiroko Tabuchi (2012 yil 15-yanvar). "Panel Yaponiyaning yadroviy ofatlar to'g'risidagi hisobotini talab qilmoqda". Nyu-York Tayms.
  126. ^ "Yaponiya Fukusimadan keyingi reaktorni tekshirmoqda", deydi maslahatchilar.. Ish haftaligi. 2012 yil 27 yanvar. Arxivlangan asl nusxasi 2012 yil 14 fevralda.
  127. ^ Xiroko Tabuchi (2012 yil 3 mart). "Yaponiya Bosh vaziri hukumat yadro falokati uchun aybdor deb aytdi". The New York Times.
  128. ^ Nyutan, Semyuel Apton (2007). 1-yadro urushi va 20-asrning boshqa yirik yadro falokatlari, AuthorHouse.
  129. ^ "Eng dahshatli yadroviy ofatlar - foto insholar - VAQT". time.com. 2009-03-25. Olingan 2015-02-07.
  130. ^ a b Arifumi Xasegava, Koichi Tanigawa, Akira Ohtsuru, Xiroki Yabe, Masaharu Maeda va boshqalar. al. "Yadroviy avariyalar natijasida radiatsiya va boshqa sog'liq muammolarining sog'liqqa ta'siri, Fukusimaga e'tibor qaratilgan ", Lanset, 386-jild, № 9992, 479-488-betlar, 2015 yil 1-avgust.
  131. ^ "Fotoalbom yoqilg'ilar atom energetikasidan ancha xavfli - 2011 yil 23 mart - New Scientist". Arxivlandi asl nusxasi 2011-03-25. Olingan 2015-02-07.
  132. ^ Dag Brugge; Jamie L. deLemos & Cat Bui (2007 yil sentyabr). "Sequoyah korporatsiyasi yoqilg'ini chiqarish va cherkovdagi toshlar to'kilishi: amerikalik hind jamoalarida ommaviy bo'lmagan yadroviy chiqindilar". Amerika sog'liqni saqlash jurnali. 97 (9): 1595–600. doi:10.2105 / AJPH.2006.103044. PMC  1963288. PMID  17666688.
  133. ^ a b Annabelle Quince (2011 yil 30 mart). "Atom energetikasi tarixi". ABC Radio National.
  134. ^ a b "Fukusima qishlog'idan evakuatsiya qilinganlar oilalarning ajralishi, umidsizlik kuchayishi haqida xabar berishdi". Mainichi Daily News. 2012 yil 30-yanvar. Arxivlangan asl nusxasi 2012 yil 30 yanvarda.
  135. ^ Uolsh, Brayan. "Eritma: Qo'rquvga qaramay, Fukusimada sodir bo'lgan avariya tufayli sog'liq uchun xavf minimaldir" - science.time.com orqali.
  136. ^ "Radioaktiv chiqindilarning tibbiy xavfliligi" (PDF). PNFA. Arxivlandi asl nusxasi (PDF) 2013-04-10.
  137. ^ M. V. Ramana (2011 yil iyul). "Atom energetikasi va jamoatchilik". Atom olimlari byulleteni. p. 48.
  138. ^ a b Keyt Bradsher (2009 yil 15-dekabr). "Xitoyda atom energiyasining kengayishi tashvishga solmoqda". Nyu-York Tayms. Olingan 2010-01-21.
  139. ^ a b Charlz D. Fergyuson va Frank A. Settle (2012). "AQShda atom energiyasining kelajagi" (PDF). Amerika olimlari federatsiyasi.
  140. ^ Kennett Benedikt (2012 yil 9-avgust). "Fuqarolik itoatsizligi". Atom olimlari byulleteni.
  141. ^ Jey Devis. Yadrodan keyin 11 sentyabr Washington Post, 2008 yil 25 mart.
  142. ^ Brayan Maykl Jenkins. Yadroviy 11 sentyabrmi? CNN.com, 2008 yil 11 sentyabr.
  143. ^ Orde Kittri. Falokatni oldini olish: Yadro qurolini tarqatmaslik to'g'risidagi shartnoma nega to'sqinlik qobiliyatini yo'qotmoqda va uni qanday tiklash mumkin Arxivlandi 2010-06-07 da Orqaga qaytish mashinasi 2007 yil 22-may, p. 338.
  144. ^ Nikolas D. Kristof. Yadro 9/11 The New York Times, 2004 yil 10 mart.
  145. ^ Zetter, Kim (2013 yil 25 mart). "Huquqiy ekspertlar: Eronga Stuxnet hujumi noqonuniy kuch ishlatilgan'". Simli.
  146. ^ Fusion Energy-ga kirish, J. Reece Roth, 1986 yil.[sahifa kerak ]
  147. ^ T. Xamaxer va A.M. Bredsha (2001 yil oktyabr). "Kelishuv kelajak kuchi manbai sifatida: so'nggi yutuqlar va istiqbollar" (PDF). Butunjahon energetika kengashi. Arxivlandi asl nusxasi (PDF) 2004-05-06 da.
  148. ^ Veyt Gibbs (2013 yil 30-dekabr). "Uch marta tahdid qilish usuli birlashishga umid uyg'otadi". Tabiat. 505 (7481): 9–10. Bibcode:2014 yil Natur.505 .... 9G. doi:10.1038 / 505009a. PMID  24380935.
  149. ^ a b "ITERdan tashqari". ITER loyihasi. Axborot xizmatlari, Princeton plazma fizikasi laboratoriyasi. Arxivlandi asl nusxasi 2006-11-07 kunlari. Olingan 2011-02-05. - Prognozli termoyadroviy quvvat xronologiyasi
  150. ^ "EFDA faoliyatiga umumiy nuqtai". EFDA. Evropa termoyadroviy sintezini rivojlantirish bo'yicha kelishuv. Arxivlandi asl nusxasi 2006-10-01 kunlari. Olingan 2006-11-11.

Tashqi havolalar