Qora tuynuk - Black hole

A qora tuynuk mintaqasi bo'sh vaqt qayerda tortishish kuchi shunchalik kuchliki, hech narsa yo'q - yo'q zarralar yoki hatto elektromagnit nurlanish kabi yorug'lik - undan qochib qutulish mumkin.[1] Nazariyasi umumiy nisbiylik etarlicha ixcham ekanligini taxmin qilmoqda massa qora tuynuk hosil qilish uchun bo'shliqni deformatsiya qilishi mumkin.[2][3]

Hech qanday qochib qutulishning iloji bo'lmagan mintaqaning chegarasi voqealar ufqi. Voqealar gorizonti uni kesib o'tadigan ob'ekt taqdiri va sharoitlariga juda katta ta'sir ko'rsatsa-da, umumiy nisbiylik bo'yicha uning mahalliy aniqlanadigan xususiyatlari yo'q.[4] Ko'p jihatdan qora tuynuk idealga o'xshaydi qora tan, chunki u hech qanday nurni aks ettirmaydi.[5][6] Bundan tashqari, egri fazodagi kvant maydon nazariyasi voqea ufqlari chiqarilishini bashorat qiladi Xoking radiatsiyasi, bilan xuddi shu spektr uning massasiga teskari proportsional bo'lgan haroratning qora tanasi sifatida. Bu harorat a ning milliarddan bir qismiga to'g'ri keladi kelvin uchun yulduz massasining qora teshiklari, kuzatishni aslida imkonsiz holga keltirdi.

Ob'ektlar kimga tegishli tortishish maydonlari birinchi marta 18-asrda ko'rib chiqilgan yorug'lik qochib qutulish uchun juda kuchli Jon Mishel va Per-Simon Laplas.[7] Qora tuynukni tavsiflaydigan umumiy nisbiylikning birinchi zamonaviy echimi topildi Karl Shvartschild 1916 yilda, garchi uni hech narsa qochib qutulolmaydigan makon mintaqasi sifatida talqin qilishgan bo'lsa ham Devid Finkelshteyn 1958 yilda. Qora tuynuklar uzoq vaqt matematik qiziqish deb hisoblangan; faqatgina 60-yillarga qadar nazariy ishlar ularning umumiy nisbiylikning umumiy prognozi ekanligini ko'rsatdi. Kashfiyoti neytron yulduzlari tomonidan Jocelyn Bell Burnell 1967 yilda qiziqish uyg'otdi tortishish kuchi bilan qulab tushdi mumkin bo'lgan astrofizik haqiqat sifatida ixcham narsalar.

Yulduz massasining qora teshiklari hayot tsikli oxirida juda katta yulduzlar qulaganda paydo bo'lishi kutilmoqda. Qora tuynuk paydo bo'lgandan so'ng, u atrofdagi massani so'rib olish orqali o'sishda davom etishi mumkin. Boshqa yulduzlarni singdirish va boshqa qora tuynuklar bilan birlashish orqali supermassive qora tuynuklar millionlab quyosh massalari (M) shakllanishi mumkin. Supermassiv qora tuynuklarning ko'pchiligining markazlarida mavjudligi to'g'risida kelishuv mavjud galaktikalar.

Qora tuynukning mavjudligi, uning boshqalari bilan o'zaro ta'siri orqali aniqlanishi mumkin materiya va ko'rinadigan yorug'lik kabi elektromagnit nurlanish bilan. Qora tuynukka tushgan materiya tashqi hosil bo'lishi mumkin to'plash disklari ishqalanish bilan isitiladi, hosil bo'ladi kvazarlar, koinotdagi eng yorqin narsalar. Super-massiv qora tuynukdan juda yaqin o'tib ketadigan yulduzlar "yutib yuborilishidan" oldin juda yorqin porlab turadigan oqimlarga bo'linishi mumkin.[8] Agar qora tuynuk atrofida aylanadigan boshqa yulduzlar bo'lsa, ularning orbitalari yordamida qora tuynukning massasi va joylashishini aniqlash mumkin. Bunday kuzatuvlar neytron yulduzlari kabi mumkin bo'lgan alternativalarni istisno qilish uchun ishlatilishi mumkin. Shu tarzda, astronomlar ko'plab qora tanli nomzodlarni aniqladilar ikkilik tizimlar va ma'lum bo'lgan radio manbai ekanligini aniqladi O'qotar A *, yadrosida Somon yo'li galaktikada, taxminan 4,3 million quyosh massasi bo'lgan supermassiv qora tuynuk mavjud.

2016 yil 11-fevral kuni LIGO Ilmiy hamkorlik va Virgo bilan hamkorlik birinchi to'g'ridan-to'g'ri aniqlashni e'lon qildi ning tortishish to'lqinlari, bu shuningdek qora tuynukning birlashishini birinchi kuzatishni anglatadi.[9] 2018 yil dekabr holatiga ko'ra, o'n bir tortishish to'lqinlari hodisalari o'nta qora tuynukdan (bitta ikkilik bilan birga) kelib chiqqanligi kuzatilgan neytron yulduzining birlashishi ).[10][11] 2019 yil 10 aprelda kuzatuvlardan so'ng qora tuynuk va uning yaqin atrofidagi birinchi to'g'ridan-to'g'ri rasm nashr etildi Voqealar Horizon teleskopi 2017 yilda supermassive qora tuynuk yilda Messier 87 "s galaktika markazi.[12][13][14]

Blackness of space with black marked as center of donut of orange and red gases
The supermassive qora tuynuk asosiy qismida supergigant elliptik galaktika Messier 87, Quyoshnikidan taxminan 7 milliard marta massasi bilan,[15] birinchisida tasvirlanganidek soxta rang tomonidan chiqarilgan radio to'lqinlardagi tasvir Voqealar Horizon teleskopi (2019 yil 10-aprel).[16][12][17][18] Yarim oy shaklidagi emissiya halqasi va markaziy soyasi ko'rinib turadi,[19] bu qora tuynukning foton halqasi va uning foton tortishish zonasining tortish kuchi bilan kattalashtirilgan ko'rinishlari voqealar ufqi. Yarim oy shakli qora tuynukdan paydo bo'ladi aylanish va relyativistik nurlanish; soya voqea ufqining diametridan taxminan 2,6 marta katta.[12]
Shvartsshild qora tuynugi
Simulyatsiyasi gravitatsion linzalar a tasvirini buzadigan qora tuynuk tomonidan galaktika fonda
Markazdagi qora tuynuk gaz bulutini parchalab tashlamoqda Somon yo'li (2006, 2010 va 2013 yillardagi kuzatuvlar navbati bilan ko'k, yashil va qizil ranglarda ko'rsatilgan).[20]

Tarix

Oldidagi qora tuynukning simulyatsiya qilingan ko'rinishi Katta magellan buluti. Ga e'tibor bering gravitatsion linzalar Bulutning ikkita kattalashtirilgan, ammo juda buzilgan ko'rinishini keltirib chiqaradigan effekt. Yuqoridan yuqorida Somon yo'li disk kamon shaklida buzilgan ko'rinadi.

Tananing g'oyasi shunchalik ulkanki, hatto yorug'lik qochib qutula olmaydi, astronomik kashshof va ingliz ruhoniysi tomonidan qisqacha taklif qilingan Jon Mishel 1784 yil noyabrda chop etilgan maktubda. Mishelning sodda hisob-kitoblari bunday jismning Quyosh bilan bir xil zichlikka ega bo'lishini taxmin qildi va yulduzning diametri Quyoshnikidan 500 marta oshib ketganda va sirt shunday jism hosil bo'ladi degan xulosaga keldi. qochish tezligi odatdagi yorug'lik tezligidan oshib ketadi. Mishel bunday supermassiv, ammo nurlanmaydigan jismlarni yaqin atrofdagi ko'rinadigan jismlarga tortishish ta'sirlari orqali aniqlash mumkinligini ta'kidladi.[21][7][22] O'sha davr olimlari dastlab ulkan, ammo ko'rinmas yulduzlar oddiy ko'rinishda yashirinishi mumkin degan taklifdan hayajonlandilar, ammo o'n to'qqizinchi asrning boshlarida yorug'likning to'lqinli tabiati aniq bo'lganda ishtiyoq susaydi.[23]

Agar yorug'lik "o'rniga" to'lqin bo'lsakorpuskula ", tortishish kuchlari yorug'lik to'lqinlaridan qochib ketishiga qanday ta'sir qilishi aniq emas.[7][22] Zamonaviy fizika Mishellning yorug'lik nurini to'g'ridan-to'g'ri supermassiv yulduz sathidan otishi, yulduzning tortishish kuchi bilan sekinlashishi, to'xtashi va so'ngra yana yulduz yuzasiga tushishi haqidagi tushunchasini yo'qqa chiqaradi.[24]

Umumiy nisbiylik

1915 yilda, Albert Eynshteyn uning nazariyasini ishlab chiqdi umumiy nisbiylik, ilgari tortishish yorug'lik harakatiga ta'sir qilishini ko'rsatdi. Faqat bir necha oy o'tgach, Karl Shvartschild topildi a yechim uchun Eynshteyn maydon tenglamalari, tavsiflovchi tortishish maydoni a massa va sharsimon massa.[25] Shvartsilddan bir necha oy o'tgach, talaba Yoxannes Droste Xendrik Lorents, mustaqil ravishda nuqta massasi uchun bir xil eritmani berdi va uning xususiyatlari haqida kengroq yozdi.[26][27] Ushbu echim hozirgi kunda "deb nomlangan narsada o'ziga xos xulq-atvorga ega edi Shvartschild radiusi, qaerda bo'ldi yakka, ya'ni Eynshteyn tenglamalaridagi ba'zi atamalar cheksiz bo'lib qoldi. Ushbu sirtning tabiati o'sha paytda juda yaxshi tushunilmagan edi. 1924 yilda, Artur Eddington koordinatalar o'zgarganidan keyin o'ziga xoslik yo'qolganligini ko'rsatdi (qarang Eddington - Finkelshteyn koordinatalari ), garchi bu 1933 yilgacha davom etgan bo'lsa Jorj Lemetre bu shvarsshild radiusidagi o'ziga xoslikni jismoniy bo'lmaganligini anglatishini anglash koordinatali o'ziga xoslik.[28] Artur Eddington 1926 yilgi kitobida massasi Shvartsshild radiusiga siqilgan yulduz paydo bo'lishi mumkinligi haqida fikr bildirdi va Eynshteyn nazariyasi Betelgeuse singari ko'rinadigan yulduzlar uchun juda katta zichlikni istisno qilishga imkon beradi, chunki "250 million km radiusdagi yulduz Birinchidan, tortishish kuchi shunchalik katta bo'lar ediki, yorug'lik undan qochib qutula olmaydi, nurlar yulduzga qaytib toshga o'xshab yerga tushadi, ikkinchidan, qizil siljish. spektral chiziqlar shunchalik katta bo'lar ediki, spektr mavjudlikdan siljiydi, uchinchidan, massa fazoviy vaqt metrikasining shu qadar egriligini hosil qiladiki, kosmik yulduz atrofida yopilib, bizni tashqarida qoldiradi (ya'ni hech qaerda). . "[29][30]

1931 yilda, Subrahmanyan Chandrasekhar aylanmaydigan jismning maxsus nisbiyligi yordamida hisoblab chiqilgan elektron-degenerativ modda ma'lum bir cheklovchi massadan yuqori (endi Chandrasekhar limiti 1.4 daM) barqaror echimlarga ega emas.[31] Uning dalillariga Eddington va singari ko'plab zamondoshlari qarshi chiqishgan Lev Landau, kimdir hali noma'lum mexanizm qulashni to'xtatadi deb ta'kidladi.[32] Ular qisman to'g'ri edi: a oq mitti Chandrasekhar chegarasidan biroz kattaroq massa a ga aylanadi neytron yulduzi,[33] o'zi barqaror. Ammo 1939 yilda, Robert Oppengeymer va boshqalar neytron yulduzlari boshqa chegaradan yuqori ekanligini taxmin qilishgan (the Tolman-Oppengeymer-Volkoff chegarasi ) Chandrasekxar tomonidan keltirilgan sabablarga ko'ra yanada qulab tushishi va hech qanday fizika qonuni aralashmasligi va hech bo'lmaganda ba'zi yulduzlarning qora tuynuklarga qulashini to'xtatmasligi mumkin degan xulosaga keldi.[34] Ga asoslangan ularning asl hisob-kitoblari Paulini istisno qilish printsipi, uni 0,7 ga tenglashtirdiM; keyinchalik kuchli kuch vositachiligidagi neytron-neytron repulsiyasini ko'rib chiqish taxminni taxminan 1,5 ga oshirdiM 3.0 gaM.[35] Neytron yulduzining birlashishini kuzatishlar GW170817 Birozdan keyin qora tuynuk paydo bo'lgan deb o'ylangan TOV chegaralarini ~ 2.17 ga aniqladiM.[36][37][38][39][40]

Oppengeymer va uning mualliflari Shvartschild radiusi chegarasidagi o'ziga xoslikni bu vaqt to'xtagan pufakchaning chegarasi ekanligini ko'rsatib talqin qilishdi. Bu tashqi kuzatuvchilar uchun to'g'ri nuqtai nazar, ammo kuzatuvchilarga ta'sir qilish uchun emas. Ushbu xususiyat tufayli qulab tushgan yulduzlarni "muzlagan yulduzlar" deb atashgan, chunki tashqi kuzatuvchi yulduzning qulashi uni Shvarsshild radiusiga olib boradigan lahzada vaqtida muzlab qolganligini ko'rar edi.[41]

Oltin asr

1958 yilda, Devid Finkelshteyn Shvartsshild sirtini an voqealar ufqi, "mukammal bir yo'nalishli membrana: sababiy ta'sirlar uni faqat bitta yo'nalishda kesib o'tishi mumkin".[42] Bu Oppengeymer natijalariga qat'iyan zid kelmadi, balki ularni kuzatayotgan kuzatuvchilar nuqtai nazariga qo'shib qo'ydi. Finkelshteynning echimi qora tuynukka tushib qolgan kuzatuvchilarning kelajagi uchun Shvartsshild echimini kengaytirdi. A to'liq kengaytma tomonidan allaqachon topilgan edi Martin Kruskal, kim uni nashr etishga undagan.[43]

Ushbu natijalar boshida paydo bo'ldi umumiy nisbiylikning oltin davri umumiy nisbiylik va qora tuynuklar tadqiqotning asosiy mavzusiga aylanganligi bilan ajralib turardi. Ushbu jarayonga kashfiyot yordam berdi pulsarlar tomonidan Jocelyn Bell Burnell 1967 yilda,[44][45] 1969 yilga kelib, ular tez aylanayotganligini ko'rsatdi neytron yulduzlari.[46] O'sha vaqtgacha neytron yulduzlari, xuddi qora tuynuklar kabi, faqat nazariy qiziqish sifatida qaralib kelgan; ammo pulsarlarning kashf etilishi ularning fizik jihatdan dolzarbligini ko'rsatdi va tortishish qulashi natijasida vujudga kelishi mumkin bo'lgan ixcham narsalarning barcha turlariga bo'lgan qiziqishni yanada oshirdi.[iqtibos kerak ]

Ushbu davrda ko'proq umumiy qora tuynuk echimlari topildi. 1963 yilda, Roy Kerr topildi aniq echim a aylanadigan qora tuynuk. Ikki yildan so'ng, Ezra Nyuman topdi eksimetrik ham aylanadigan, ham qora tuynuk uchun eritma elektr zaryadlangan.[47] Ishi orqali Verner Isroil,[48] Brendon Karter,[49][50] va Devid Robinson[51] The sochsiz teorema statsionar qora tuynuk eritmasi ning uchta parametri bilan to'liq tavsiflanganligini bildirgan holda paydo bo'ldi Kerr-Nyuman metrikasi: massa, burchak momentum va elektr zaryadi.[52]

Dastlab, qora tuynuk eritmalarining g'alati xususiyatlari, o'rnatilgan simmetriya sharoitidan patologik asarlar va shubhali narsalar umumiy holatlarda paydo bo'lmaydi. Ushbu qarash, xususan, tomonidan amalga oshirildi Vladimir Belinskiy, Isaak Xalatnikov va Evgeniy Lifshits, umumiy echimlarda hech qanday o'ziga xoslik ko'rinmasligini isbotlashga harakat qilgan. Biroq, 1960 yillarning oxirida Rojer Penrose[53] va Stiven Xoking singularlik umumiy ko'rinishda bo'lishini isbotlash uchun global metodlardan foydalangan.[54] Ushbu ish uchun Penrose 2020 yilning yarmini oldi Fizika bo'yicha Nobel mukofoti, Xoking 2018 yilda vafot etdi.[55]

Ishlash Jeyms Bardin, Yoqub Bekenshteyn, Karter va Xoking 1970-yillarning boshlarida formulatsiyaga olib keldi qora tuynuk termodinamikasi.[56] Ushbu qonunlar qora tuynuk xatti-harakatiga o'xshash o'xshashlikni tasvirlaydi termodinamikaning qonunlari massani energiya bilan, maydonni bilan bog'lash orqali entropiya va sirt tortishish kuchi ga harorat. 1974 yilda Xoking buni ko'rsatganida o'xshashlik yakunlandi kvant maydon nazariyasi qora tuynuklar a kabi nurlanishi kerakligini anglatadi qora tan qora tuynukning sirt tortishish kuchiga mutanosib harorat bilan, endi ma'lum bo'lgan effektni bashorat qiladi Xoking radiatsiyasi.[57]

Etimologiya

Jon Mishel "qorong'u yulduz" atamasini ishlatgan,[58] va 20-asrning boshlarida fiziklar "tortishish kuchi bilan qulagan ob'ekt" atamasidan foydalanganlar. Ilmiy yozuvchi Marcia Bartusiak fizikka "qora tuynuk" atamasini izohlaydi Robert H. Dikki, 1960-yillarning boshlarida ushbu hodisani Kalkuttaning qora tuynugi, odamlar kirgan, ammo hech qachon tirik qoldirmagan qamoqxona kabi taniqli.[59]

Tomonidan nashr etilgan "qora tuynuk" atamasi ishlatilgan Hayot va Fan yangiliklari 1963 yilda jurnallar,[59] va ilmiy jurnalist Ann Ewing o'z maqolasida ""Kosmosdagi" qora tuynuklar ", 1964 yil 18-yanvar kuni bo'lib o'tdi Amerika ilm-fanni rivojlantirish bo'yicha assotsiatsiyasi Ogayo shtatining Klivlend shahrida bo'lib o'tdi.[60][61]

Xabarlarga ko'ra 1967 yil dekabr oyida talaba ma'ruzada "qora tuynuk" iborasini taklif qilgan Jon Uiler;[60] Uiler bu atamani qisqa va "reklama qiymati" uchun qabul qildi va u tezda ushlanib qoldi,[62] iborani biriktirish bilan ba'zilarni "Wheeler" ni kreditlashiga olib boradi.[63]

Xususiyatlari va tuzilishi

Yigirmagan qora tuynukning oddiy tasviri

The sochsiz gumon hosil bo'lgandan keyin barqaror holatga kelgandan so'ng, qora tuynuk faqat uchta mustaqil fizik xususiyatga ega: massa, zaryadlash va burchak momentum; qora tuynuk aks holda xususiyatsizdir. Agar taxmin to'g'ri bo'lsa, ushbu xususiyatlar yoki parametrlar uchun bir xil qiymatlarga ega bo'lgan har qanday ikkita qora tuynuk bir-biridan farq qilmaydi. Zamonaviy fizika qonunlariga binoan haqiqiy qora tuynuklar uchun gipotezaning haqiqat darajasi hozirda hal qilinmagan muammodir.[52]

Ushbu xususiyatlar alohida ahamiyatga ega, chunki ular qora tuynuk tashqarisidan ko'rinadi. Masalan, zaryadlangan qora tuynuk boshqa zaryadlangan narsalar singari zaryadlarni ham qaytaradi. Xuddi shunday, qora tuynukni o'z ichiga olgan shar ichidagi umumiy massani tortish analogidan foydalanib topish mumkin Gauss qonuni (orqali ADM massasi ), qora tuynukdan uzoqda.[64] Xuddi shu tarzda, burchak momentumini (yoki aylanishini) uzoqdan foydalanib o'lchash mumkin freymni tortish tomonidan gravitomagnit maydon, masalan orqali Linza-tirnoq effekti.[65]

Ob'ekt qora tuynukka tushganda, har qanday ma `lumot ob'ekt shakli yoki unga zaryadning taqsimlanishi haqida qora tuynuk ufq bo'ylab teng taqsimlanadi va tashqi kuzatuvchilarga yo'qoladi. Bu vaziyatda ufqning xatti-harakati a dissipativ tizim bu ishqalanish bilan va o'tkazuvchan cho'ziluvchan membranaga o'xshash elektr qarshilik - bu membrana paradigmasi.[66] Bu boshqasidan farq qiladi dala nazariyalari masalan, mikroskopik darajada ishqalanish yoki qarshilikka ega bo'lmagan elektromagnetizm, chunki ular vaqtni qaytarib beradigan. Qora tuynuk oxir-oqibat atigi uchta parametrga ega bo'lgan barqaror holatga erishganligi sababli, dastlabki holatlar to'g'risida ma'lumotni yo'qotishdan saqlanishning imkoni yo'q: qora tuynukning tortishish kuchi va elektr maydonlari ichkariga kirgan narsalar haqida juda kam ma'lumot beradi. Yo'qotilgan ma'lumotlar qora tuynuk ufqidan uzoqroqda o'lchab bo'lmaydigan har qanday miqdorni o'z ichiga oladi taxminan saqlanib qolgan kvant raqamlari jami kabi barion raqami va lepton raqami. Ushbu xatti-harakatlar shunchalik jumboqliki, u "deb nomlangan qora tuynuk ma'lumotlarini yo'qotish paradoksi.[67][68]

Qora tuynuk atrofida tortishish vaqtining kengayishi

Jismoniy xususiyatlar

Eng oddiy statik qora tuynuklar massaga ega, lekin na elektr zaryadi, na burchakli impuls. Ushbu qora tuynuklar ko'pincha deb nomlanadi Shvartschildning qora teshiklari buni kashf etgan Karl Shvartschilddan keyin yechim 1916 yilda.[25] Ga binoan Birxof teoremasi, bu yagona vakuumli eritma anavi sferik nosimmetrik.[69] Bu shuni anglatadiki, bunday qora tuynukning tortishish maydoni va shu massadagi boshqa har qanday sferik ob'ekt orasidagi masofada kuzatiladigan farq yo'q. Qora tuynuk atrofidagi "hamma narsani so'rib oladi" degan mashhur tushuncha, faqat qora tuynuk ufqiga yaqin joyda to'g'ri keladi; olisda, tashqi tortishish kuchi bir xil massadagi boshqa har qanday jismga o'xshaydi.[70]

Umumiy qora tuynuklarni tavsiflovchi echimlar ham mavjud. Aylanmaydigan zaryadlangan qora tuynuklar tomonidan tasvirlangan Reissner-Nordström metrikasi, esa Kerr metrikasi zaryadsiz tasvirlaydi aylanadigan qora tuynuk. Eng umumiy statsionar ma'lum bo'lgan qora tuynuk eritmasi Kerr-Nyuman metrikasi, bu ikkala zaryad va burchak momentumiga ega bo'lgan qora tuynukni tasvirlaydi.[71]

Qora tuynuk massasi har qanday ijobiy qiymatni qabul qilishi mumkin bo'lsa, zaryad va burchak impulsi massa bilan cheklanadi. Yilda Plank birliklari, umumiy elektr zaryadiQ va umumiy burchak impulsiJ qondirishi kutilmoqda

massaning qora teshigi uchun M. Ushbu tengsizlikni qondiradigan minimal massa bo'lgan qora tuynuklar deyiladi ekstremal. Ushbu tengsizlikni buzadigan Eynshteyn tenglamalarining echimlari mavjud, ammo ular hodisalar ufqiga ega emas. Ushbu echimlar deb nomlangan yalang'och o'ziga xosliklar tashqi tomondan kuzatilishi mumkin va shu sababli hisoblanadi jismoniy bo'lmagan. The kosmik tsenzuraning gipotezasi gravitatsiyaviy qulashi natijasida vujudga kelganida, bunday o'ziga xosliklarning shakllanishini istisno qiladi realistik masala.[2] Buni raqamli simulyatsiyalar qo'llab-quvvatlaydi.[72]

Nisbatan katta kuchliligi tufayli elektromagnit kuch, yulduzlarning qulashidan hosil bo'lgan qora tuynuklar yulduzning deyarli neytral zaryadini saqlab qolishi kutilmoqda. Biroq, rotatsiya ixcham astrofizik ob'ektlarning universal xususiyati bo'lishi kutilmoqda. Qora tuynukka nomzod ikkilik rentgen manbai GRS 1915 + 105[73] ruxsat etilgan maksimal qiymatga yaqin burchak momentumiga ega ko'rinadi. Ushbu zaryadlanmagan limit[74]

a ta'rifini berish o'lchovsiz spin parametri shunday[74]

[74][Izoh 1]
Qora tuynuk tasnifi
SinfTaxminan.
massa
Taxminan.
radius
Supermassive qora tuynuk105–1010 MQuyosh0.001–400 AU
Oraliq massali qora tuynuk103 MQuyosh103 km ≈ RYer
Yulduzli qora tuynuk10 MQuyosh30 km
Mikro qora tuynukqadar MOy0,1 mm gacha

Qora tuynuklar, odatda, burchak momentumidan mustaqil ravishda, ularning massasi bo'yicha tasniflanadi, J. Voqealar gorizonti radiusi bilan aniqlangan qora tuynuk kattaligi yoki Shvartschild radiusi, massaga mutanosib, M, orqali

qayerda rs Shvartsild radiusi va MQuyosh bo'ladi Quyosh massasi.[76] Noldan kam bo'lmagan aylanma va / yoki elektr zaryadli qora tuynuk uchun radius kichikroq,[Izoh 2] gacha ekstremal qora tuynuk yaqin voqea ufqiga ega bo'lishi mumkin[77]

Voqealar ufqi

Qora tuynukdan uzoqda zarracha har qanday yo'nalishda harakatlanishi mumkin, bu o'qlar to'plamida tasvirlangan. U faqat yorug'lik tezligi bilan cheklangan.
Qora tuynukka yaqinroq bo'lgan vaqt oralig'i deformatsiya qila boshlaydi. Qora tuynukka qarab ketadigan yo'llardan ko'ra ko'proq yo'llar bor.[3-eslatma]
Voqealar gorizonti ichida barcha yo'llar zarrachani qora tuynuk markaziga yaqinlashtiradi. Endi zarrachaning qochib ketishi mumkin emas.

Qora tuynukni belgilovchi xususiyati - voqea gorizontining paydo bo'lishi bo'sh vaqt bu orqali materiya va yorug'lik faqat qora tuynuk massasiga qarab ichkariga o'tishi mumkin. Hodisa ufqining ichidan hech narsa, hatto yorug'lik ham qochib qutula olmaydi.[79][80] Hodisa ufqiga shunday deyiladi, chunki agar hodisa chegarada sodir bo'lsa, ushbu hodisadan olingan ma'lumot tashqi kuzatuvchiga etib bora olmaydi, shuning uchun bunday hodisa ro'y berganligini aniqlash mumkin emas.[81]

Umumiy nisbiylik prognoz qilganidek, massaning mavjudligi bo'shliqni vaqtni shunday deformatsiya qiladi, zarrachalar bosib o'tgan yo'llar massaga tomon egilib qoladi.[82] Qora tuynuk hodisasi gorizontida bu deformatsiya shu qadar kuchayadiki, qora tuynukdan uzoqlashadigan yo'llar yo'q.[83]

Uzoq kuzatuvchiga qora tuynuk yaqinidagi soatlar qora tuynukdan uzoqroq bo'lganlarga qaraganda sekinroq aylanib ketganday tuyuladi.[84] Nomi bilan tanilgan ushbu ta'sir tufayli tortishish vaqtining kengayishi, qora tuynukka tushgan narsa hodisalar ufqiga yaqinlashganda sekinlashganday tuyuladi, unga erishish uchun cheksiz vaqt ketadi.[85] Shu bilan birga, ushbu ob'ektdagi barcha jarayonlar sekin tashqi kuzatuvchining nuqtai nazaridan sekinlashadi, natijada ob'ekt chiqaradigan har qanday yorug'lik qizg'ish va xira bo'lib ko'rinadi, bu effekt gravitatsiyaviy qizil siljish.[86] Oxir-oqibat, yiqilib tushayotgan narsa ko'rinmay qolguncha yo'qoladi. Odatda bu jarayon juda tez sodir bo'ladi, chunki ob'ekt bir soniyadan kamroq vaqt ichida ko'zdan g'oyib bo'ladi.[87]

Boshqa tomondan, qora tuynukka qulab tushadigan buzilmas kuzatuvchilar voqealar gorizontidan o'tayotganda ushbu ta'sirlarning hech birini sezmaydilar. Ularga odatdagidek tuyuladigan soatlarga ko'ra, ular hodisalar ufqini cheklangan vaqtdan keyin hech qanday singular xatti-harakatni qayd etmasdan kesib o'tadilar; klassik umumiy nisbiylikda Eynshteyn tufayli hodisa ufqining joyini mahalliy kuzatuvlardan aniqlash mumkin emas ekvivalentlik printsipi.[88][89]

The topologiya muvozanatdagi qora tuynukning hodisalar gorizonti har doim sharsimon.[4-eslatma][92] Aylanmaydigan (statik) qora tuynuklar uchun hodisa ufqining geometriyasi aniq shar shaklida, aylanayotgan qora tuynuklar uchun esa voqea gorizonti oblatdir.[93][94][95]

Yagonalik

Qora tuynuk markazida, umumiy nisbiylik ta'riflaganidek, a bo'lishi mumkin tortishish o'ziga xosligi, bo'shliq egriligi cheksiz bo'lib qoladigan mintaqa.[96] Aylanmaydigan qora tuynuk uchun bu mintaqa bitta nuqta shaklini oladi va a uchun aylanadigan qora tuynuk, a hosil qilish uchun bulg'angan halqa o'ziga xosligi aylanish tekisligida yotadi.[97] Ikkala holatda ham singular mintaqa nol hajmga ega. Shuningdek, singular mintaqada qora tuynuk eritmasining barcha massasi borligini ko'rsatish mumkin.[98] Shunday qilib, yagona mintaqani cheksiz deb o'ylash mumkin zichlik.[99]

Shvartschildning qora tuynugiga tushgan kuzatuvchilar (ya'ni aylanmaydigan va zaryadsiz) hodisalar ufqini kesib o'tgandan so'ng o'ziga xoslikka olib borishdan qochib qutula olmaydilar. Ular o'zlarining nasllarini sekinlashtirish uchun tezlikni oshirib, tajribani uzaytirishi mumkin, ammo faqat cheklangan darajagacha.[100] Ular o'ziga xoslikka erishganda, ular cheksiz zichlikka qadar eziladi va ularning massasi qora tuynukning umumiy soniga qo'shiladi. Bu sodir bo'lishidan oldin, ular o'sib borishi bilan ajralib ketishgan gelgit kuchlari ba'zan deb ataladigan jarayonda spagetifikatsiya yoki "noodle effect".[101]

Zaryadlangan (Reissner-Nordström) yoki aylanuvchi (Kerr) qora tuynuk holatida o'ziga xoslikdan qochish mumkin. Ushbu echimlarni iloji boricha kengaytirish, qora tuynukning rolini bajaruvchi qora tuynuk bilan boshqa bo'shliqqa chiqish gipotetik imkoniyatini ochib beradi. qurt teshigi.[102] Boshqa koinotga sayohat qilish imkoniyati faqat nazariy jihatdan mavjud, chunki har qanday bezovtalik bu imkoniyatni yo'q qiladi.[103] Bundan tashqari, unga amal qilish mumkin ko'rinadi yopiq vaqtga o'xshash egri chiziqlar (o'z o'tmishiga qaytish) Kerrning o'ziga xosligi atrofida, bu esa muammolarga olib keladi nedensellik kabi bobo paradoks.[104] Aylanadigan va zaryadlangan qora tuynuklarni to'g'ri kvant bilan davolashda ushbu o'ziga xos ta'sirlarning hech biri omon qolmasligi kutilmoqda.[105]

Umumiy nisbiylikdagi o'ziga xosliklarning paydo bo'lishi odatda nazariya buzilganligini bildiruvchi signal sifatida qabul qilinadi.[106] Biroq, bu buzilish kutilmoqda; bu vaziyatda yuzaga keladi kvant effektlari juda yuqori zichlik va shuning uchun zarrachalarning o'zaro ta'siri tufayli ushbu harakatlarni tavsiflashi kerak. Hozirgi kungacha kvant va tortishish effektlarini yagona nazariyaga birlashtirishning iloji yo'q edi, ammo bunday nazariyani shakllantirishga urinishlar mavjud kvant tortishish kuchi. Odatda bunday nazariya o'ziga xosliklarga ega bo'lmaydi deb kutilmoqda.[107][108]

Foton sfera

Foton shar - bu nol qalinlikdagi sferik chegaradir fotonlar bu davom etmoqda tangents u sharga qora tuynuk atrofida joylashgan aylana orbitasida ushlanib qoladi. Aylanmaydigan qora tuynuklar uchun foton shar radiusi Shvartsshild radiusidan 1,5 baravar katta. Ularning orbitalari bo'ladi dinamik ravishda beqaror shuning uchun har qanday mayda bezovtalanish, masalan, tushayotgan materiyaning zarrachasi, vaqt o'tishi bilan o'sib boradigan beqarorlikni keltirib chiqaradi yoki fotonni tashqi traektoriyaga o'rnatib, uni qora tuynukdan qochib ketishiga yoki oxir-oqibat kesib o'tadigan ichki spiralga o'rnatadi. voqealar gorizonti.[109]

Foton sharidan yorug'lik hali ham qochib qutulishi mumkin bo'lsa-da, foton sharni kiruvchi traektoriyada kesib o'tgan har qanday yorug'lik qora tuynuk tomonidan ushlanib qoladi. Shuning uchun foton sharidan tashqi kuzatuvchiga etib boradigan har qanday yorug'lik foton shar va hodisalar ufq orasidagi ob'ektlar tomonidan chiqarilishi kerak edi.[109] Kerr qora tuynugi uchun foton sfera radiusi spin parametriga va foton orbitasining tafsilotlariga bog'liq bo'lib, u progratsiyalanishi mumkin (foton qora tuynuk aylanasi ma'nosida aylanadi) yoki retrograd.[110][111]

Ergosfera

Ergosfera - bu hodisalar gorizontidan tashqaridagi hudud bo'lib, u erda ob'ektlar o'z joylarida qola olmaydi.[112]

Aylanadigan qora tuynuklar ergosfera deb ataladigan bo'sh vaqt mintaqasi bilan o'ralgan. Bu ma'lum bo'lgan jarayonning natijasidir ramkaga tortish; umumiy nisbiylik, har qanday aylanuvchi massa uni o'rab turgan vaqt oralig'ida ozgina "sudrab" ketishini taxmin qilmoqda. Aylanadigan massa yaqinidagi har qanday ob'ekt aylanish yo'nalishi bo'yicha harakat qilishni boshlaydi. Aylanadigan qora tuynuk uchun bu ta'sir hodisalar gorizonti yaqinida shunchalik kuchliki, shunchaki to'xtab turish uchun ob'ekt qarama-qarshi yo'nalishdagi yorug'lik tezligidan tezroq harakatlanishi kerak bo'ladi.[113]

Qora tuynuk ergosferasi - bu ichki chegarasi qora tuynuk hodisasi gorizonti va tashqi chegarasi ergosurface, bu hodisalar gorizontiga to'g'ri keladi, lekin ekvator atrofida sezilarli darajada kengroq.[112]

Ob'ektlar va radiatsiya ergosferadan normal ravishda chiqib ketishi mumkin. Orqali Penrose jarayoni, ob'ektlar ergosferadan kirgandan ko'ra ko'proq energiya bilan chiqishi mumkin. Qo'shimcha energiya qora tuynukning aylanish energiyasidan olinadi. Shu bilan qora tuynukning aylanishi sekinlashadi.[114] Penrose jarayonining kuchli magnit maydonlari mavjudligidagi o'zgarishi, Blandford - Znajek jarayoni ning ulkan porlashi va relyativistik oqimlari uchun mumkin bo'lgan mexanizm hisoblanadi kvazarlar va boshqalar faol galaktik yadrolar.

Ichki barqaror aylana orbitasi (ISCO)

Yilda Nyutonning tortishish kuchi, sinov zarralari markaziy ob'ektdan o'zboshimchalik masofalarida barqaror ravishda aylana oladi. Yilda umumiy nisbiylik ammo, ichki turg'un aylana orbitasi mavjud (ko'pincha ISCO deb ataladi), uning ichida dumaloq orbitadagi har qanday cheksiz ozorlanishlar qora tuynukka ilhom berishga olib keladi.[115] ISCO ning joylashishi qora tuynukning aylanishiga bog'liq bo'lib, Shvartsshild qora tuynugi holatida (aylanma nol):

va aylanma yo'nalishda aylanayotgan zarrachalar uchun qora tuynuk spinining ko'payishi bilan kamayadi.[116]

Shakllanish va evolyutsiya

Qora tuynuklarning g'alati xarakterini hisobga olgan holda, bunday narsalar aslida tabiatda mavjud bo'lishi mumkinmi yoki ular faqat Eynshteyn tenglamalarining patologik echimlari bo'ladimi degan savol ko'pdan beri paydo bo'ldi. Eynshteynning o'zi qora tuynuklar paydo bo'lmaydi deb noto'g'ri o'ylagan, chunki u qulab tushgan zarralarning burchak momentumini ularning harakatini ma'lum bir radiusda barqarorlashtiradi deb hisoblagan.[117] Bu umumiy nisbiylik jamoatchiligini ko'p yillar davomida barcha natijalarni aksincha rad etishga olib keldi. Biroq, relyativistlarning ozchilik qismi qora tuynuklar jismoniy narsalar deb da'vo qilishda davom etishdi,[118] va 1960-yillarning oxiriga kelib, ular ushbu sohadagi tadqiqotchilarning aksariyatini voqealar ufqini shakllantirishga hech qanday to'siq yo'qligiga ishontirdilar.[iqtibos kerak ]

Ikki qora tuynuk to'qnashishini simulyatsiya qilish

Penrose, voqea gorizonti paydo bo'lgandan so'ng, kvant mexanikasisiz umumiy nisbiylik ichida o'ziga xoslik hosil bo'lishini talab qilganligini ko'rsatdi.[53] Ko'p o'tmay, Xoking buni tavsiflovchi ko'plab kosmologik echimlarni ko'rsatdi Katta portlash birliksiz xususiyatlarga ega skalar maydonlari yoki boshqa ekzotik materiya (qarang "Penrose-Hawking singularlik teoremalari ").[tushuntirish kerak ] The Kerr eritmasi, sochsiz teorema va qonunlari qora tuynuk termodinamikasi qora tuynuklarning fizik xususiyatlari sodda va tushunarli ekanligini ko'rsatib, ularni izlanish uchun obro'li mavzularga aylantirdi.[119] An'anaviy qora tuynuklar tomonidan hosil qilingan tortishish qulashi yulduzlar kabi og'ir narsalarning, lekin ular nazariy jihatdan boshqa jarayonlar natijasida ham shakllanishi mumkin.[120][121]

Gravitatsion qulash

Gravitatsiyaviy kollaps ob'ekt ichki holatida yuzaga keladi bosim ob'ektning o'ziga xos tortishish kuchiga qarshi turish uchun etarli emas. Yulduzlar uchun bu odatda yoki haroratni ushlab turish uchun yulduzda juda oz "yoqilg'i" qolganligi sababli sodir bo'ladi yulduz nukleosintezi yoki barqaror bo'lgan yulduz qo'shimcha haroratni asosiy haroratini ko'tarmaydigan tarzda qabul qilganligi sababli. Ikkala holatda ham yulduzning harorati endi uning og'irligi ostida qulashiga yo'l qo'ymaslik uchun etarli emas.[122]Yiqilish to'xtatilishi mumkin degeneratsiya bosimi moddalarning kondensatsiyalanishini ekzotik holatga keltiradigan yulduz tarkibiy qismlaridan iborat zichroq holat. Natijada har xil turlaridan biri ixcham yulduz. Qaysi turdagi shakllar, agar tashqi qatlamlar uchib ketgan bo'lsa, asl yulduz qoldig'ining massasiga bog'liq (masalan, a II tip supernova ). Qoldiqning massasi, portlashdan omon qolgan qulab tushgan narsa, asl yulduznikidan sezilarli darajada kam bo'lishi mumkin. 5 dan oshiq qoldiqlarM 20 yoshdan oshgan yulduzlar tomonidan ishlab chiqariladiM qulashidan oldin.[122]

Agar qoldiqning massasi taxminan 3-4 dan oshsaM (the Tolman-Oppengeymer-Volkoff chegarasi[34]), yoki asl yulduz juda og'ir bo'lganligi sababli yoki qoldiq moddalarning ko'payishi natijasida qo'shimcha massa to'planganligi sababli, hatto degeneratsiya bosimi neytronlar qulashni to'xtatish uchun etarli emas. Ma'lum mexanizm yo'q (ehtimol kvark degeneratsiyasi bosimidan tashqari, qarang) kvark yulduzi ) implosatsiyani to'xtatish uchun etarlicha kuchli va ob'ekt qora tuynuk hosil qilish uchun muqarrar ravishda qulab tushadi.[122]

Rassomning supermassiv qora tuynuk urug'i haqidagi taassuroti[123]

Og'ir yulduzlarning tortishish qulashi hosil bo'lish uchun javobgardir yulduz massasi qora tuynuklar. Yulduz shakllanishi dastlabki koinotda juda katta yulduzlar paydo bo'lishi mumkin edi, ular qulashi bilan 10 tagacha qora tuynuklar paydo bo'lishi mumkin edi3 M. Ushbu qora tuynuklar ko'pgina galaktikalarning markazlarida joylashgan supermassiv qora tuynuklarning urug'lari bo'lishi mumkin.[124] Odatda massasi ~ 10 bo'lgan massiv qora tuynuklar taklif qilingan5 M yosh koinotdagi gaz bulutlarining to'g'ridan-to'g'ri qulashidan hosil bo'lishi mumkin edi.[120] Ushbu ulkan ob'ektlar urug 'sifatida taklif qilingan, natijada ular qizil siljishda kuzatilgan eng qadimgi kvazarlarni hosil qilganlar .[125] Bunday narsalar uchun ba'zi nomzodlar yosh koinotni kuzatishlarida topilgan.[120]

Gravitatsiyaviy qulash paytida chiqarilgan energiyaning katta qismi juda tez chiqarilsa-da, tashqi kuzatuvchi bu jarayonning oxirini aslida ko'rmaydi. Garchi qulash, dan cheklangan vaqtni talab qilsa ham mos yozuvlar ramkasi zarba berayotgan materiyaning uzoq kuzatuvchisi voqea ufqining yuqorisida to'xtab turganini ko'radi. tortishish vaqtining kengayishi. Yiqilib tushayotgan materialdan yorug'lik kuzatuvchiga yetib borishi uchun ko'proq va ko'proq vaqt ketadi, hodisaning ufq paydo bo'lishidan oldin chiqarilgan yorug'lik cheksiz vaqtni kechiktiradi. Shunday qilib tashqi kuzatuvchi voqea ufqining shakllanishini hech qachon ko'rmaydi; aksincha, qulab tushayotgan material xira bo'lib, tobora qizg'ish rangga aylanib, oxir-oqibat yo'q bo'lib ketmoqda.[126]

Ibtidoiy qora tuynuklar va Katta portlash

Gravitatsiyaviy kollaps katta zichlikni talab qiladi. Koinotning hozirgi davrida bu yuqori zichlik faqat yulduzlarda uchraydi, lekin koinotdan biroz vaqt o'tgach, dastlabki koinotda Katta portlash zichlik juda katta edi, ehtimol qora tuynuklarni yaratishga imkon berdi. Faqatgina yuqori zichlik qora tuynuk paydo bo'lishiga imkon berish uchun etarli emas, chunki massani bir tekis taqsimlash massani to'plashga imkon bermaydi. Buning uchun ibtidoiy qora teshiklar shunday zich muhitda hosil bo'lish uchun dastlab o'zlarining tortishish kuchi ostida o'sishi mumkin bo'lgan dastlabki zichlik buzilishlari bo'lishi kerak edi. Dastlabki koinotning turli xil modellari ushbu dalgalanmalar ko'lamini bashorat qilishda juda xilma-xil. Turli modellar a dan kattaligiga qadar bo'lgan ibtidoiy qora tuynuklarning yaratilishini taxmin qilishadi Plank massasi yuz minglab quyosh massalariga.[121]

Dastlabki koinot juda katta bo'lishiga qaramay zich - qora tuynuk hosil qilish uchun odatda talab qilinadigan darajada zichroq - Katta portlash paytida u yana qora tuynukka qulab tushmadi. Uchun modellar tortishish qulashi kabi nisbatan doimiy o'lchamdagi ob'ektlarning yulduzlar, Katta portlash kabi tezlik bilan kengayib borayotgan kosmosga bir xil tarzda amal qilish shart emas.[127]

Yuqori energiyali to'qnashuvlar

CMS detektoridagi simulyatsion hodisa: mikro qora tuynuk paydo bo'lishi mumkin bo'lgan to'qnashuv

Gravitatsiyaviy qulash qora tuynuklarni yaratishi mumkin bo'lgan yagona jarayon emas. Aslida qora teshiklar paydo bo'lishi mumkin edi yuqori energiya etarli zichlikka erishadigan to'qnashuvlar. 2002 yildan boshlab to'g'ridan-to'g'ri yoki bilvosita massa balansining etishmasligi sifatida bunday hodisalar aniqlanmagan zarracha tezlatuvchisi tajribalar.[128] Bu shuni ko'rsatadiki, qora tuynuklar massasi uchun pastki chegara bo'lishi kerak. Nazariy jihatdan ushbu chegara atrofida joylashgan bo'lishi kutilmoqda Plank massasi (mP=ħ v /G1.2×1019 GeV /v22.2×10−8 kg), bu erda kvant effektlari umumiy nisbiylik bashoratlarini bekor qilishi kutilmoqda.[129] Bu qora tuynuklarning yaratilishini Yerda yoki uning yonida sodir bo'ladigan har qanday yuqori energiyali jarayonga erishib bo'lmaydigan darajada qo'yib yuboradi. Biroq, kvant tortishish kuchidagi ba'zi o'zgarishlar shuni ko'rsatadiki, qora tuynukning minimal massasi ancha past bo'lishi mumkin: ba'zilari firuza dunyo masalan, stsenariylar chegarani past darajaga tushiradi 1 TeV /v2.[130] Bu buni tasavvur qilish mumkin edi mikro qora tuynuklar qachon yuzaga keladigan yuqori energiyali to'qnashuvlarda yaratilishi kerak kosmik nurlar Yer atmosferasiga, yoki ehtimol Katta Hadron kollayderi da CERN. Ushbu nazariyalar juda spekulyativ va bu jarayonlarda qora tuynuklar paydo bo'lishi ko'plab mutaxassislar tomonidan taxmin qilinmaydi.[131] Mikro qora tuynuklar paydo bo'lishi mumkin bo'lsa ham, ular paydo bo'lishi kutilmoqda bug'lang taxminan 10 da−25 soniya, Yerga hech qanday xavf tug'dirmaydi.[132]

O'sish

Qora tuynuk paydo bo'lgandan so'ng, qo'shimcha yutish orqali o'sishda davom etishi mumkin materiya. Har qanday qora tuynuk doimiy ravishda gazni yutadi va yulduzlararo chang uning atrofidan. Ushbu o'sish jarayoni ba'zi bir supermassive qora tuynuklar paydo bo'lishi mumkin bo'lgan usullardan biri hisoblanadi supermassiv qora tuynuklarning shakllanishi hali ham tadqiqotning ochiq sohasi hisoblanadi.[124] Shunga o'xshash jarayonni shakllantirish uchun taklif qilingan oraliq massali qora tuynuklar ichida topilgan sharsimon klasterlar.[133] Qora tuynuklar boshqa narsalar, masalan yulduzlar yoki hatto boshqa qora tuynuklar bilan birlashishi mumkin. Bu, ayniqsa, juda kichik ob'ektlarning birlashishi natijasida hosil bo'lishi mumkin bo'lgan supermassiv qora tuynuklarning erta o'sishida muhim bo'lgan deb o'ylashadi.[124] The process has also been proposed as the origin of some intermediate-mass black holes.[134][135]

Bug'lanish

In 1974, Hawking predicted that black holes are not entirely black but emit small amounts of thermal radiation at a temperature ℏ v3/(8 π G M kB );[57] this effect has become known as Xoking radiatsiyasi. Ariza berish orqali kvant maydon nazariyasi to a static black hole background, he determined that a black hole should emit particles that display a perfect qora tanadagi spektr. Since Hawking's publication, many others have verified the result through various approaches.[136] If Hawking's theory of black hole radiation is correct, then black holes are expected to shrink and evaporate over time as they lose mass by the emission of photons and other particles.[57] The temperature of this thermal spectrum (Xoking harorati ) ga mutanosib sirt tortishish kuchi of the black hole, which, for a Schwarzschild black hole, is inversely proportional to the mass. Hence, large black holes emit less radiation than small black holes.[137]

A stellar black hole of 1 M has a Hawking temperature of 62 nanokelvinlar.[138] This is far less than the 2.7 K temperature of the kosmik mikroto'lqinli fon nurlanish. Stellar-mass or larger black holes receive more mass from the cosmic microwave background than they emit through Hawking radiation and thus will grow instead of shrinking.[139] To have a Hawking temperature larger than 2.7 K (and be able to evaporate), a black hole would need a mass less than the Oy. Such a black hole would have a diameter of less than a tenth of a millimeter.[140]

If a black hole is very small, the radiation effects are expected to become very strong. A black hole with the mass of a car would have a diameter of about 10−24 m and take a nanosecond to evaporate, during which time it would briefly have a luminosity of more than 200 times that of the Sun. Lower-mass black holes are expected to evaporate even faster; for example, a black hole of mass 1 TeV/v2 would take less than 10−88 seconds to evaporate completely. For such a small black hole, kvant tortishish kuchi effects are expected to play an important role and could hypothetically make such a small black hole stable, although current developments in quantum gravity do not indicate this is the case.[141][142]

The Hawking radiation for an astrophysical black hole is predicted to be very weak and would thus be exceedingly difficult to detect from Earth. A possible exception, however, is the burst of gamma rays emitted in the last stage of the evaporation of primordial black holes. Searches for such flashes have proven unsuccessful and provide stringent limits on the possibility of existence of low mass primordial black holes.[143] NASA Fermi Gamma-ray kosmik teleskopi launched in 2008 will continue the search for these flashes.[144]

If black holes evaporate via Xoking radiatsiyasi, a solar mass black hole will evaporate (beginning once the temperature of the cosmic microwave background drops below that of the black hole) over a period of 1064 yil.[145] Massasi 10 ga teng bo'lgan supermassiv qora tuynuk11 (100 milliard) M will evaporate in around 2×10100 yil.[146] Some monster black holes in the universe are predicted to continue to grow up to perhaps 1014 M during the collapse of superclusters of galaxies. Even these would evaporate over a timescale of up to 10106 yil.[145]

Kuzatuv dalillari

Messier 87 galaxy – home of the first imaged black hole
kontekst
Rasmni yaqinlashtirib olish

By nature, black holes do not themselves emit any electromagnetic radiation other than the hypothetical Xoking radiatsiyasi, so astrophysicists searching for black holes must generally rely on indirect observations. For example, a black hole's existence can sometimes be inferred by observing its gravitational influence upon its surroundings.[147]

On 10 April 2019 an image was released of a black hole, which is seen in magnified fashion because the light paths near the event horizon are highly bent. The dark shadow in the middle results from light paths absorbed by the black hole.[19] Rasm ichida soxta rang, as the detected light halo in this image is not in the visible spectrum, but radio waves.

This artist's impression depicts the paths of photons in the vicinity of a black hole. The gravitational bending and capture of light by the event horizon is the cause of the shadow captured by the Event Horizon Telescope.

The Voqealar Horizon teleskopi (EHT), is an active program that directly observes the immediate environment of the event horizon of black holes, such as the black hole at the centre of the Milky Way. In April 2017, EHT began observation of the black hole in the center of Messier 87.[148] "In all, eight radio observatories on six mountains and four continents observed the galaxy in Virgo on and off for 10 days in April 2017" to provide the data yielding the image two years later in April 2019.[149] After two years of data processing, EHT released the first direct image of a black hole, specifically the supermassive black hole that lies in the center of the aforementioned galaxy.[150][151] What is visible is not the black hole, which shows as black because of the loss of all light within this dark region, rather it is the gases at the edge of the event horizon, which are displayed as orange or red, that define the black hole.[152]

The brightening of this material in the 'bottom' half of the processed EHT image is thought to be caused by Doppler beaming, whereby material approaching the viewer at relativistic speeds is perceived as brighter than material moving away. In the case of a black hole this phenomenon implies that the visible material is rotating at relativistic speeds (>1,000 km/s), the only speeds at which it is possible to centrifugally balance the immense gravitational attraction of the singularity, and thereby remain in orbit above the event horizon. This configuration of bright material implies that the EHT observed M87 * from a perspective catching the black hole's accretion disc nearly edge-on, as the whole system rotated clockwise.[153] However, the extreme gravitatsion linzalar associated with black holes produces the illusion of a perspective that sees the accretion disc from above. In reality, most of the ring in the EHT image was created when the light emitted by the far side of the accretion disc bent around the black hole's gravity well and escaped such that most of the possible perspectives on M87* can see the entire disc, even that directly behind the "shadow".

Prior to this, in 2015, the EHT detected magnetic fields just outside the event horizon of Sagittarius A*, and even discerned some of their properties. The field lines that pass through the accretion disc were found to be a complex mixture of ordered and tangled. The existence of magnetic fields had been predicted by theoretical studies of black holes.[154][155]

Predicted appearance of non-rotating black hole with toroidal ring of ionised matter, such as has been proposed[156] uchun namuna sifatida O'qotar A *. The asymmetry is due to the Dopler effekti resulting from the enormous orbital speed needed for centrifugal balance of the very strong gravitational attraction of the hole.

Detection of gravitational waves from merging black holes

On 14 September 2015 the LIGO gravitational wave observatory made the first-ever successful direct observation of gravitational waves.[9][157] The signal was consistent with theoretical predictions for the gravitational waves produced by the merger of two black holes: one with about 36 quyosh massalari, and the other around 29 solar masses.[9][158] This observation provides the most concrete evidence for the existence of black holes to date. For instance, the gravitational wave signal suggests that the separation of the two objects prior to the merger was just 350 km (or roughly four times the Schwarzschild radius corresponding to the inferred masses). The objects must therefore have been extremely compact, leaving black holes as the most plausible interpretation.[9]

More importantly, the signal observed by LIGO also included the start of the post-merger ringdown, the signal produced as the newly formed compact object settles down to a stationary state. Arguably, the ringdown is the most direct way of observing a black hole.[159] From the LIGO signal it is possible to extract the frequency and damping time of the dominant mode of the ringdown. From these it is possible to infer the mass and angular momentum of the final object, which match independent predictions from numerical simulations of the merger.[160] The frequency and decay time of the dominant mode are determined by the geometry of the photon sphere. Hence, observation of this mode confirms the presence of a photon sphere, however it cannot exclude possible exotic alternatives to black holes that are compact enough to have a photon sphere.[159]

The observation also provides the first observational evidence for the existence of stellar-mass black hole binaries. Furthermore, it is the first observational evidence of stellar-mass black holes weighing 25 solar masses or more.[161]

Since then many more gravitational wave events have since been observed.[11]

Proper motions of stars orbiting Sagittarius A*

The to'g'ri harakatlar of stars near the center of our own Somon yo'li provide strong observational evidence that these stars are orbiting a supermassive black hole.[162] Since 1995, astronomers have tracked the motions of 90 stars orbiting an invisible object coincident with the radio source O'qotar A *. By fitting their motions to Keplerian orbits, the astronomers were able to infer, in 1998, that a 2.6 million M object must be contained in a volume with a radius of 0.02 yorug'lik yillari to cause the motions of those stars.[163] Since then, one of the stars—called S2 —has completed a full orbit. From the orbital data, astronomers were able to refine the calculations of the mass to 4.3 million M and a radius of less than 0.002 light-years for the object causing the orbital motion of those stars.[162] The upper limit on the object's size is still too large to test whether it is smaller than its Schwarzschild radius; nevertheless, these observations strongly suggest that the central object is a supermassive black hole as there are no other plausible scenarios for confining so much invisible mass into such a small volume.[163] Additionally, there is some observational evidence that this object might possess an event horizon, a feature unique to black holes.[164]

Accretion of matter

Black hole with corona, X-ray source (artist's concept)[165]

Sababli burchak momentumining saqlanishi,[166] gas falling into the tortishish qudug'i created by a massive object will typically form a disk-like structure around the object. Artists' impressions such as the accompanying representation of a black hole with corona commonly depict the black hole as if it were a flat-space body hiding the part of the disk just behind it, but in reality gravitational lensing would greatly distort the image of the accretion disk.[167]

NASA simulated view from outside the horizon of a Schwarzschild black hole lit by a thin accretion disk.

Within such a disk, friction would cause angular momentum to be transported outward, allowing matter to fall farther inward, thus releasing potential energy and increasing the temperature of the gas.[168]

Blurring of X-rays near black hole (NuSTAR; 12 August 2014)[165]

When the accreting object is a neytron yulduzi or a black hole, the gas in the inner accretion disk orbits at very high speeds because of its proximity to the ixcham ob'ekt. The resulting friction is so significant that it heats the inner disk to temperatures at which it emits vast amounts of electromagnetic radiation (mainly X-rays). These bright X-ray sources may be detected by telescopes. This process of accretion is one of the most efficient energy-producing processes known; up to 40% of the rest mass of the accreted material can be emitted as radiation.[168] (In nuclear fusion only about 0.7% of the rest mass will be emitted as energy.) In many cases, accretion disks are accompanied by relyativistik samolyotlar that are emitted along the poles, which carry away much of the energy. The mechanism for the creation of these jets is currently not well understood, in part due to insufficient data.[169]

As such, many of the universe's more energetic phenomena have been attributed to the accretion of matter on black holes. Jumladan, faol galaktik yadrolar va kvazarlar are believed to be the accretion disks of supermassive black holes.[170] Similarly, X-ray binaries are generally accepted to be ikkilik yulduz systems in which one of the two stars is a compact object accreting matter from its companion.[170] Bundan tashqari, ba'zilari taklif qilingan ultraluminous rentgen manbalari may be the accretion disks of intermediate-mass black holes.[171]

In November 2011 the first direct observation of a quasar accretion disk around a supermassive black hole was reported.[172][173]

X-ray ikkiliklari

Computer simulation of a star being consumed by a black hole. The blue dot indicates the location of the black hole.
This animation compares the X-ray "heartbeats" of GRS 1915 and IGR J17091, two black holes that ingest gas from companion stars.
A Chandra rentgen rasadxonasi ning tasviri Cygnus X-1, which was the first strong black hole candidate discovered

X-ray ikkiliklari bor ikkilik yulduz systems that emit a majority of their radiation in the Rentgen spektrning bir qismi. These X-ray emissions are generally thought to result when one of the stars (compact object) accretes matter from another (regular) star. The presence of an ordinary star in such a system provides an opportunity for studying the central object and to determine if it might be a black hole.[170]

If such a system emits signals that can be directly traced back to the compact object, it cannot be a black hole. The absence of such a signal does, however, not exclude the possibility that the compact object is a neutron star. By studying the companion star it is often possible to obtain the orbital parameters of the system and to obtain an estimate for the mass of the compact object. If this is much larger than the Tolman–Oppenheimer–Volkoff limit (the maximum mass a star can have without collapsing) then the object cannot be a neutron star and is generally expected to be a black hole.[170]

The first strong candidate for a black hole, Cygnus X-1, was discovered in this way by Charles Thomas Bolton,[174] Louise Webster and Paul Murdin[175] 1972 yilda.[176][177] Some doubt, however, remained due to the uncertainties that result from the companion star being much heavier than the candidate black hole. Currently, better candidates for black holes are found in a class of X-ray binaries called soft X-ray transients. In this class of system, the companion star is of relatively low mass allowing for more accurate estimates of the black hole mass. Moreover, these systems actively emit X-rays for only several months once every 10–50 years. During the period of low X-ray emission (called quiescence), the accretion disk is extremely faint allowing detailed observation of the companion star during this period. One of the best such candidates is V404 Cygni.[170]

Quasi-periodic oscillations

The X-ray emissions from accretion disks sometimes flicker at certain frequencies. These signals are called yarim davriy tebranishlar and are thought to be caused by material moving along the inner edge of the accretion disk (the innermost stable circular orbit). As such their frequency is linked to the mass of the compact object. They can thus be used as an alternative way to determine the mass of candidate black holes.[178]

Galaktik yadrolar

Magnetic waves, called Alfvén S-waves, flow from the base of black hole jets.

Astronomers use the term "active galaxy " to describe galaxies with unusual characteristics, such as unusual spektral chiziq emission and very strong radio emission. Theoretical and observational studies have shown that the activity in these active galactic nuclei (AGN) may be explained by the presence of supermassive qora tuynuklar, which can be millions of times more massive than stellar ones. The models of these AGN consist of a central black hole that may be millions or billions of times more massive than the Quyosh; a disk of gaz va chang called an accretion disk; va ikkitasi samolyotlar perpendicular to the accretion disk.[179][180]

Detection of unusually bright Rentgen nurlari alangalanish O'qotar A *, a black hole in the center of the Somon yo'li galaxy on 5 2015 yil yanvar[181]

Although supermassive black holes are expected to be found in most AGN, only some galaxies' nuclei have been more carefully studied in attempts to both identify and measure the actual masses of the central supermassive black hole candidates. Some of the most notable galaxies with supermassive black hole candidates include the Andromeda Galaxy, M32, M87, NGC 3115, NGC 3377, NGC 4258, NGC 4889, NGC 1277, OJ 287, APM 08279 + 5255 va Sombrero Galaxy.[182]

It is now widely accepted that the center of nearly every galaxy, not just active ones, contains a supermassive black hole.[183] The close observational correlation between the mass of this hole and the velocity dispersion of the host galaxy's bo'rtish deb nomlanuvchi M-sigma munosabati, strongly suggests a connection between the formation of the black hole and the galaxy itself.[184]

Simulation of gas cloud after close approach to the black hole at the centre of the Milky Way.[185]

Microlensing (proposed)

Another way the black hole nature of an object may be tested in the future is through observation of effects caused by a strong gravitational field in their vicinity. One such effect is gravitatsion linzalar: The deformation of spacetime around a massive object causes light rays to be deflected much as light passing through an optic ob'ektiv. Observations have been made of weak gravitational lensing, in which light rays are deflected by only a few ark sekundlari. However, it has never been directly observed for a black hole.[186] One possibility for observing gravitational lensing by a black hole would be to observe stars in orbit around the black hole. There are several candidates for such an observation in orbit around O'qotar A *.[186]

Shu bilan bir qatorda

The evidence for stellar black holes strongly relies on the existence of an upper limit for the mass of a neutron star. The size of this limit heavily depends on the assumptions made about the properties of dense matter. New exotic moddaning fazalari could push up this bound.[170] A phase of free kvarklar at high density might allow the existence of dense kvark yulduzlari,[187] va ba'zilari super simmetrik models predict the existence of Q stars.[188] Some extensions of the standart model posit the existence of preons as fundamental building blocks of quarks and leptonlar, which could hypothetically form preon stars.[189] These hypothetical models could potentially explain a number of observations of stellar black hole candidates. However, it can be shown from arguments in general relativity that any such object will have a maximum mass.[170]

Since the average density of a black hole inside its Schwarzschild radius is inversely proportional to the square of its mass, supermassive black holes are much less dense than stellar black holes (the average density of a 108 M black hole is comparable to that of water).[170] Consequently, the physics of matter forming a supermassive black hole is much better understood and the possible alternative explanations for supermassive black hole observations are much more mundane. For example, a supermassive black hole could be modelled by a large cluster of very dark objects. However, such alternatives are typically not stable enough to explain the supermassive black hole candidates.[170]

The evidence for the existence of stellar and supermassive black holes implies that in order for black holes to not form, general relativity must fail as a theory of gravity, perhaps due to the onset of kvant mexanik tuzatishlar. A much anticipated feature of a theory of quantum gravity is that it will not feature singularities or event horizons and thus black holes would not be real artifacts.[190] Masalan, Fuzzbol model based on torlar nazariyasi, the individual states of a black hole solution do not generally have an event horizon or singularity, but for a classical/semi-classical observer the statistical average of such states appears just as an ordinary black hole as deduced from general relativity.[191]

A few theoretical objects have been conjectured to match observations of astronomical black hole candidates identically or near-identically, but which function via a different mechanism. Ular orasida gravastar, black star,[192] va qora energiya yulduzi.[193]

Ochiq savollar

Entropy and thermodynamics

S = 1/4 v3k/ A
The formula for the Bekenstein–Hawking entropy (S) of a black hole, which depends on the area of the black hole (A). The constants are the yorug'lik tezligi (v), the Boltsman doimiy (k), Nyutonning doimiysi (G), va Plank doimiysi kamayadi (ħ). Yilda Plank birliklari, bu kamayadi S = A/4.

In 1971, Hawking showed under general conditions[5-eslatma] that the total area of the event horizons of any collection of classical black holes can never decrease, even if they collide and merge.[194] This result, now known as the second law of black hole mechanics, is remarkably similar to the termodinamikaning ikkinchi qonuni, which states that the total entropiya of an isolated system can never decrease. As with classical objects at mutlaq nol temperature, it was assumed that black holes had zero entropy. If this were the case, the second law of thermodynamics would be violated by entropy-laden matter entering a black hole, resulting in a decrease of the total entropy of the universe. Therefore, Bekenstein proposed that a black hole should have an entropy, and that it should be proportional to its horizon area.[195]

The link with the laws of thermodynamics was further strengthened by Hawking's discovery that kvant maydon nazariyasi predicts that a black hole radiates qora tanli nurlanish doimiy haroratda. This seemingly causes a violation of the second law of black hole mechanics, since the radiation will carry away energy from the black hole causing it to shrink. The radiation, however also carries away entropy, and it can be proven under general assumptions that the sum of the entropy of the matter surrounding a black hole and one quarter of the area of the horizon as measured in Plank birliklari is in fact always increasing. This allows the formulation of the first law of black hole mechanics as an analogue of the termodinamikaning birinchi qonuni, with the mass acting as energy, the surface gravity as temperature and the area as entropy.[195]

One puzzling feature is that the entropy of a black hole scales with its area rather than with its volume, since entropy is normally an extensive quantity that scales linearly with the volume of the system. This odd property led Jerar Hoft va Leonard Susskind taklif qilish golografik printsip, which suggests that anything that happens in a volume of spacetime can be described by data on the boundary of that volume.[196]

Although general relativity can be used to perform a semi-classical calculation of black hole entropy, this situation is theoretically unsatisfying. Yilda statistik mexanika, entropy is understood as counting the number of microscopic configurations of a system that have the same macroscopic qualities (such as massa, zaryadlash, bosim, va boshqalar.). Without a satisfactory theory of kvant tortishish kuchi, one cannot perform such a computation for black holes. Some progress has been made in various approaches to quantum gravity. 1995 yilda, Endryu Strominger va Cumrun Vafa showed that counting the microstates of a specific super simmetrik qora tuynuk torlar nazariyasi reproduced the Bekenstein–Hawking entropy.[197] Since then, similar results have been reported for different black holes both in string theory and in other approaches to quantum gravity like halqa kvant tortishish kuchi.[198]

Information loss paradox

Savol, Veb Fundamentals.svgFizikada hal qilinmagan muammo:
Shunday jismoniy ma'lumotlar lost in black holes?
(fizikada ko'proq hal qilinmagan muammolar)

Because a black hole has only a few internal parameters, most of the information about the matter that went into forming the black hole is lost. Regardless of the type of matter which goes into a black hole, it appears that only information concerning the total mass, charge, and angular momentum are conserved. As long as black holes were thought to persist forever this information loss is not that problematic, as the information can be thought of as existing inside the black hole, inaccessible from the outside, but represented on the event horizon in accordance with the holographic principle. However, black holes slowly evaporate by emitting Xoking radiatsiyasi. This radiation does not appear to carry any additional information about the matter that formed the black hole, meaning that this information appears to be gone forever.[199]

The question whether information is truly lost in black holes (the black hole information paradox ) has divided the theoretical physics community (see Torn - Xoking - Preskill garovi ). In quantum mechanics, loss of information corresponds to the violation of a property called birlik, and it has been argued that loss of unitarity would also imply violation of conservation of energy,[200] though this has also been disputed.[201] Over recent years evidence has been building that indeed information and unitarity are preserved in a full quantum gravitational treatment of the problem.[202]

One attempt to resolve the black hole information paradox is known as qora tuynukni to'ldirish. In 2012, the "xavfsizlik devori paradoksi " was introduced with the goal of demonstrating that black hole complementarity fails to solve the information paradox. According to egri fazodagi kvant maydon nazariyasi, a yagona emissiya ning Xoking radiatsiyasi o'zaro ikkitasini o'z ichiga oladi chigallashgan zarralar. Chiqib ketadigan zarracha qochib ketadi va Xoking nurlanishining kvanti sifatida chiqariladi; tushayotgan zarrachani qora tuynuk yutib yuboradi. Qora tuynuk o'tmishda cheklangan vaqtni yaratgan deb taxmin qiling va kelajakda bir muncha vaqt ichida to'liq bug'lanib ketadi. Then, it will emit only a finite amount of information encoded within its Hawking radiation. According to research by physicists like Don Page[203][204] va Leonard Susskind, there will eventually be a time by which an outgoing particle must be entangled with all the Hawking radiation the black hole has previously emitted. This seemingly creates a paradox: a principle called "monogamy of entanglement" requires that, like any quantum system, the outgoing particle cannot be fully entangled with two other systems at the same time; yet here the outgoing particle appears to be entangled both with the infalling particle and, independently, with past Hawking radiation.[205] In order to resolve this contradiction, physicists may eventually be forced to give up one of three time-tested principles: Einstein's ekvivalentlik printsipi, birlik yoki mahalliy kvant maydon nazariyasi. One possible solution, which violates the equivalence principle, is that a "firewall" destroys incoming particles at the event horizon.[206] In general, which if any of these assumptions should be abandoned remains a topic of debate.[201]

Shuningdek qarang

Izohlar

  1. ^ Ning qiymati cJ/GM2 can exceed 1 for objects other than black holes. The largest value known for a neutron star is ≤ 0.4, and commonly used equations of state would limit that value to < 0.7.[75]
  2. ^ The (outer) event horizon radius scales as:
  3. ^ The set of possible paths, or more accurately the future light cone containing all possible dunyo chiziqlari (in this diagram the light cone is represented by the V-shaped region bounded by arrows representing light ray world lines), is tilted in this way in Eddington - Finkelshteyn koordinatalari (the diagram is a "cartoon" version of an Eddington–Finkelstein coordinate diagram), but in other coordinates the light cones are not tilted in this way, for example in Shvarsshild koordinatalari they simply narrow without tilting as one approaches the event horizon, and in Kruskal–Szekeres coordinates the light cones do not change shape or orientation at all.[78]
  4. ^ This is true only for four-dimensional spacetimes. In higher dimensions more complicated horizon topologies like a qora uzuk are possible.[90][91]
  5. ^ In particular, he assumed that all matter satisfies the zaif energiya holati.

Adabiyotlar

  1. ^ Wald 1984 yil, 299-300 betlar
  2. ^ a b Wald, R. M. (1997). "Gravitational Collapse and Cosmic Censorship". In Iyer, B. R.; Bhawal, B. (eds.). Black Holes, Gravitational Radiation and the Universe. Springer. 69-86 betlar. arXiv:gr-qc/9710068. doi:10.1007/978-94-017-0934-7. ISBN  978-9401709347.
  3. ^ Xayr, Dennis (8 iyun 2015). "Black Hole Hunters". NASA. Arxivlandi from the original on 9 June 2015. Olingan 8 iyun 2015.
  4. ^ Xemilton, A. "Journey into a Schwarzschild black hole". jila.colorado.edu. Olingan 28 iyun 2020.
  5. ^ Shuts, Bernard F. (2003). Yerdan tortishish kuchi. Kembrij universiteti matbuoti. p. 110. ISBN  978-0-521-45506-0. Arxivlandi asl nusxasidan 2016 yil 2 dekabrda.
  6. ^ Davies, P. C. W. (1978). "Qora teshiklarning termodinamikasi" (PDF). Fizikada taraqqiyot haqida hisobotlar. 41 (8): 1313–1355. Bibcode:1978RPPh ... 41.1313D. doi:10.1088/0034-4885/41/8/004. Arxivlandi asl nusxasi (PDF) 2013 yil 10 mayda.
  7. ^ a b v Montgomery, Colin; Orchiston, Wayne; Whittingham, Ian (2009). "Michell, Laplace and the origin of the black hole concept". Astronomiya tarixi va merosi jurnali. 12 (2): 90–96. Bibcode:2009JAHH...12...90M.
  8. ^ Clery D (2020). "Black holes caught in the act of swallowing stars". Ilm-fan. 367 (6477): 495. Bibcode:2020Sci...367..495C. doi:10.1126/science.367.6477.495. PMID  32001633.
  9. ^ a b v d Abbott, B.P .; va boshq. (2016). "Ikkilik qora tuynuk birlashishidan tortishish to'lqinlarini kuzatish". Fizika. Ruhoniy Lett. 116 (6): 061102. arXiv:1602.03837. Bibcode:2016PhRvL.116f1102A. doi:10.1103 / PhysRevLett.116.061102. PMID  26918975. S2CID  124959784.
  10. ^ Siegel, Etan. "Five Surprising Truths About Black Holes From LIGO". Forbes. Olingan 12 aprel 2019.
  11. ^ a b "Detection of gravitational waves". LIGO. Olingan 9 aprel 2018.
  12. ^ a b v Event Horizon Telescope, The (2019). "Birinchi M87 Event Horizon teleskopi natijalari. I. Supermassive Black Hole of Shadow". Astrofizika jurnali. 875 (1): L1. arXiv:1906.11238. Bibcode:2019ApJ ... 875L ... 1E. doi:10.3847 / 2041-8213 / ab0ec7.
  13. ^ Bouman, Katherine L.; Johnson, Michael D.; Zoran, Daniel; Fish, Vincent L.; Doeleman, Sheperd S.; Freeman, William T. (2016). "Computational Imaging for VLBI Image Reconstruction". 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 913-922-betlar. arXiv:1512.01413. doi:10.1109/CVPR.2016.105. hdl:1721.1/103077. ISBN  978-1-4673-8851-1. S2CID  9085016.
  14. ^ Gardiner, Aidan (12 April 2018). "When a Black Hole Finally Reveals Itself, It Helps to Have Our Very Own Cosmic Reporter – Astronomers announced Wednesday that they had captured the first image of a black hole. The Times's Dennis Overbye answers readers' questions". The New York Times. Olingan 15 aprel 2019.
  15. ^ Oldham, L. J.; Auger, M. W. (March 2016). "Galaxy structure from multiple tracers – II. M87 from parsec to megaparsec scales". Qirollik Astronomiya Jamiyatining oylik xabarnomalari. 457 (1): 421–439. arXiv:1601.01323. Bibcode:2016MNRAS.457..421O. doi:10.1093/mnras/stv2982. S2CID  119166670.
  16. ^ Xayr, Dennis (2019 yil 10-aprel). "Qora tuynuk surati birinchi marta oshkor bo'ldi - astronomlar nihoyat kosmosdagi eng qorong'u mavjudotlar tasvirini olishdi - Izohlar". The New York Times. Olingan 10 aprel 2019.
  17. ^ Landau, Yelizaveta (2019 yil 10-aprel). "Qora tuynuk tasviri tarixni yaratadi". NASA. Olingan 10 aprel 2019.
  18. ^ "Birinchi qora tuynuk tasviri ortidagi ayol". bbc.co.uk. BBC yangiliklari. 11-aprel, 2019-yil.
  19. ^ a b Falcke, Heino; Meliya, Fulvio; Agol, Erik (2000 yil 1-yanvar). "Galaktik markazda qora tuynuk soyasini ko'rish". Astrofizika jurnali. 528 (1): L13-L16. arXiv:astro-ph / 9912263. Bibcode:2000ApJ ... 528L..13F. doi:10.1086/312423. PMID  10587484. S2CID  119433133.
  20. ^ "Qora tuynuk bilan yirtilgan". ESO press-relizi. Arxivlandi asl nusxasi 2013 yil 21-iyulda. Olingan 19 iyul 2013.
  21. ^ Mishel, J. (1784). "Ruxsat etilgan Yulduzlarning masofasini, kattaligini va boshqalarni kashf qilish vositalari to'g'risida, ularning yorug'lik tezligining kamayishi natijasida, ularning biron birida bunday kamayish bo'lishi kerak bo'lsa va shunga o'xshash boshqa ma'lumotlar Kuzatuvlardan olinishi kerak, chunki bu maqsad uchun ko'proq zarur bo'ladi. Rahib Jon Mishel tomonidan, BDFRS Genri Kavenishdiga maktubida, Ess. FRS va A. S ". Qirollik jamiyatining falsafiy operatsiyalari. 74: 35–57. Bibcode:1784RSPT ... 74 ... 35M. doi:10.1098 / rstl.1784.0008. JSTOR  106576.
  22. ^ a b Torn 1994 yil, 123-124 betlar
  23. ^ Slayter, Yelizaveta M.; Slayter, Genri S. (1992). Nur va elektron mikroskopiya. Kembrij universiteti matbuoti. ISBN  978-0-521-33948-3. Arxivlandi asl nusxasidan 2017 yil 30-noyabrda.
  24. ^ Crass, Astronomiya instituti - D.R. Uilkins va S.J. "Qora tuynuklardan qochgan yorug'lik". www.ast.cam.ac.uk. Olingan 10 mart 2018.
  25. ^ a b Shvartschild, K. (1916). "Uber das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie". Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften. 7: 189–196. Bibcode:1916 SPAW ....... 189S.
  26. ^ Droste, J. (1917). "Eynshteynning tortishish nazariyasidagi yagona markaz va bu sohadagi zarrachaning harakati to'g'risida" (PDF). Amsterdam Qirollik akademiyasi. 19 (1): 197-215. Arxivlandi asl nusxasi (PDF) 2013 yil 18 mayda. Olingan 16 sentyabr 2012.
  27. ^ Kox, A. J. (1992). "Gollandiyadagi umumiy nisbiylik: 1915–1920". Eyzenstaedtda Jan; Kox, A. J. (tahrir). Umumiy nisbiylik tarixidagi tadqiqotlar. Birxauzer. p. 41. ISBN  978-0-8176-3479-7.
  28. ^ Hooft, G. (2009). "Qora tuynuklar nazariyasiga kirish" (PDF). Nazariy fizika instituti / Spinoza instituti: 47-48. Arxivlandi asl nusxasi (PDF) 2009 yil 21 mayda. Olingan 24 iyun 2010. Iqtibos jurnali talab qiladi | jurnal = (Yordam bering)
  29. ^ Eddington, Artur (1926). Yulduzlarning ichki konstitutsiyasi. Ilm-fan. 52. Kembrij universiteti matbuoti. 233-40 betlar. doi:10.1126 / science.52.1341.233. ISBN  978-0-521-33708-3. PMID  17747682. Arxivlandi asl nusxasidan 2016 yil 11 avgustda.
  30. ^ Torn, Kip S.; Xoking, Stiven (1994). Qora tuynuklar va vaqt urushlari: Eynshteynning ashaddiy merosi. W. W. Norton & Company. pp.134 –135. ISBN  978-0-393-31276-8. Olingan 12 aprel 2019. Birinchi xulosa yorug'likning qochib ketmasligi haqidagi Nyutoncha versiyasi edi; ikkinchisi yarim aniq, relyativistik tavsif edi; uchinchisi esa odatdagi Eddington giperbolasi edi ... yulduz tanqidiy aylana singari kichkina bo'lsa, egrilik kuchli, ammo cheksiz emas va bo'shliq yulduzga o'ralmaydi. Ehtimol Eddington buni bilgan bo'lishi mumkin, ammo uning ta'rifi yaxshi voqeani yaratdi va u injiq tarzda Shvartsshildning kosmosdagi egrilik ruhini qamrab oldi. "
  31. ^ Venkataraman, G. (1992). Chandrasekxar va uning chegarasi. Universitetlar matbuoti. p. 89. ISBN  978-81-7371-035-3. Arxivlandi asl nusxasidan 2016 yil 11 avgustda.
  32. ^ Detvayler, S. (1981). "Resurs xat BH-1: qora tuynuklar". Amerika fizika jurnali. 49 (5): 394–400. Bibcode:1981 yil AmJPh..49..394D. doi:10.1119/1.12686.
  33. ^ Harpaz, A. (1994). Yulduz evolyutsiyasi. A K Peters. p. 105. ISBN  978-1-56881-012-6. Arxivlandi asl nusxasidan 2016 yil 11 avgustda.
  34. ^ a b Oppengeymer, J. R.; Volkoff, G. M. (1939). "Katta neytron yadrolari to'g'risida". Jismoniy sharh. 55 (4): 374–381. Bibcode:1939PhRv ... 55..374O. doi:10.1103 / PhysRev.55.374.
  35. ^ Bombaci, I. (1996). "Neytron yulduzining maksimal massasi". Astronomiya va astrofizika. 305: 871–877. Bibcode:1996A va A ... 305..871B.
  36. ^ Cho, A. (16 fevral 2018 yil). "Neytron yulduzlari uchun vazn chegarasi paydo bo'ladi". Ilm-fan. 359 (6377): 724–725. Bibcode:2018Sci ... 359..724C. doi:10.1126 / science.359.6377.724. PMID  29449468.
  37. ^ Margalit, B .; Metzger, B. D. (2017 yil 1-dekabr). "GW170817 ko'p messenjer kuzatuvlaridan neytron yulduzlarining maksimal massasini cheklash". Astrofizika jurnali. 850 (2): L19. arXiv:1710.05938. Bibcode:2017ApJ ... 850L..19M. doi:10.3847 / 2041-8213 / aa991c. S2CID  119342447.
  38. ^ Shibata M.; Fujibayashi, S .; Hotokezaka, K .; Kiuchi, K .; Kyutoku, K .; Sekiguchi, Y .; Tanaka, M. (22 dekabr 2017 yil). "GW170817 raqamli nisbiylik va uning oqibatlari asosida modellashtirish". Jismoniy sharh D. 96 (12): 123012. arXiv:1710.07579. Bibcode:2017PhRvD..96l3012S. doi:10.1103 / PhysRevD.96.123012. S2CID  119206732.
  39. ^ Ruis, M .; Shapiro, S. L.; Tsokaros, A. (11 yanvar 2018). "GW170817, umumiy relyativistik magnetohidrodinamik simulyatsiyalar va maksimal neytron yulduzi". Jismoniy sharh D. 97 (2): 021501. arXiv:1711.00473. Bibcode:2018PhRvD..97b1501R. doi:10.1103 / PhysRevD.97.021501. PMC  6036631. PMID  30003183.
  40. ^ Rezzolla, L .; Ko'pchilik, E. R .; Veyx, L. R. (9 yanvar 2018). "Neytron yulduzlarining maksimal massasini cheklash uchun tortishish to'lqinli kuzatishlar va kvazi universal aloqalardan foydalanish". Astrofizika jurnali. 852 (2): L25. arXiv:1711.00314. Bibcode:2018ApJ ... 852L..25R. doi:10.3847 / 2041-8213 / aaa401. S2CID  119359694.
  41. ^ Ruffini, R.; Uiler, J. A. (1971). "Qora tuynuk bilan tanishtirish" (PDF). Bugungi kunda fizika. 24 (1): 30–41. Bibcode:1971PhT .... 24a..30R. doi:10.1063/1.3022513. Arxivlandi asl nusxasi (PDF) 2011 yil 25 iyulda. Olingan 5 dekabr 2009.
  42. ^ Finkelshteyn, D. (1958). "Nuqta zarrachasining tortishish maydonining o'tmishi-kelajagi assimetri". Jismoniy sharh. 110 (4): 965–967. Bibcode:1958PhRv..110..965F. doi:10.1103 / PhysRev.110.965.
  43. ^ Kruskal, M. (1960). "Shvartsshild metrikasining maksimal kengayishi". Jismoniy sharh. 119 (5): 1743. Bibcode:1960PhRv..119.1743K. doi:10.1103 / PhysRev.119.1743.
  44. ^ Xewish, A.; va boshq. (1968). "Tez pulsatsiyalanuvchi radio manbasini kuzatish". Tabiat. 217 (5130): 709–713. Bibcode:1968 yil Nat.217..709H. doi:10.1038 / 217709a0. S2CID  4277613.
  45. ^ Pilkington, J. D. H.; va boshq. (1968). "Keyinchalik ba'zi impulsli radio manbalarni kuzatish". Tabiat. 218 (5137): 126–129. Bibcode:1968 yil Nat.218..126P. doi:10.1038 / 218126a0. S2CID  4253103.
  46. ^ Xewish, A. (1970). "Pulsarlar". Astronomiya va astrofizikaning yillik sharhi. 8 (1): 265–296. Bibcode:1970ARA & A ... 8..265H. doi:10.1146 / annurev.aa.08.090170.001405.
  47. ^ Nyuman, E. T.; va boshq. (1965). "Aylanadigan, zaryadlangan massaning metrikasi". Matematik fizika jurnali. 6 (6): 918. Bibcode:1965JMP ..... 6..918N. doi:10.1063/1.1704351.
  48. ^ Isroil, V. (1967). "Statik vakuum makonidagi voqea ufqlari-Times". Jismoniy sharh. 164 (5): 1776. Bibcode:1967PhRv..164.1776I. doi:10.1103 / PhysRev.164.1776.
  49. ^ Karter, B. (1971). "Aksismetrik qora tuynuk faqat ikki daraja erkinlikka ega". Jismoniy tekshiruv xatlari. 26 (6): 331. Bibcode:1971PhRvL..26..331C. doi:10.1103 / PhysRevLett.26.331.
  50. ^ Karter, B. (1977). "Vakuumli qora tuynukning o'ziga xosligi teoremasi va uni tasavvur qilish mumkin". Umumiy nisbiylik bo'yicha 1-Marsel Grossmann yig'ilishi materiallari. 243-254 betlar.
  51. ^ Robinson, D. (1975). "Kerr qora tuynugining o'ziga xosligi". Jismoniy tekshiruv xatlari. 34 (14): 905. Bibcode:1975PhRvL..34..905R. doi:10.1103 / PhysRevLett.34.905.
  52. ^ a b Heusler, M. (2012). "Statsionar qora tuynuklar: o'ziga xoslik va undan tashqarida". Nisbiylikdagi yashash sharhlari. 15 (7): 7. arXiv:1205.6112. Bibcode:2012LRR .... 15 .... 7C. doi:10.12942 / lrr-2012-7. PMC  5255892. PMID  28179837.
  53. ^ a b Penrose, R. (1965). "Gravitatsiyaviy inqiroz va makon-zamondagi yakkaliklar" (PDF). Jismoniy tekshiruv xatlari. 14 (3): 57. Bibcode:1965PhRvL..14 ... 57P. doi:10.1103 / PhysRevLett.14.57. S2CID  116755736.
  54. ^ Ford, L. H. (2003). "Klassik singularlik teoremalari va ularning kvant teshiklari". Xalqaro nazariy fizika jurnali. 42 (6): 1219–1227. arXiv:gr-qc / 0301045. Bibcode:2003gr.qc ..... 1045F. doi:10.1023 / A: 1025754515197. S2CID  14404560.
  55. ^ "Fizika bo'yicha Nobel mukofoti-2020". NobelPrize.org. Olingan 8 oktyabr 2020.
  56. ^ Bardin, J. M.; Karter, B.; Xoking, S. V. (1973). "Qora tuynuklar mexanikasining to'rtta qonuni". Matematik fizikadagi aloqalar. 31 (2): 161–170. Bibcode:1973CMaPh..31..161B. doi:10.1007 / BF01645742. JANOB  0334798. S2CID  54690354. Zbl  1125.83309.
  57. ^ a b v Xoking, S. V. (1974). "Qora tuynukdagi portlashlarmi?". Tabiat. 248 (5443): 30–31. Bibcode:1974 yil natur.248 ... 30H. doi:10.1038 / 248030a0. S2CID  4290107.
  58. ^ Popova, Mariya (2016 yil 27-iyun). "Osmonlarni xaritalash: kosmologiya bizning koinot haqidagi tushunchamizni qanday shakllantirdi va" qora tuynuk "atamasi qanday tug'ilganligi to'g'risida g'alati voqea". brainpickings.org. Olingan 12 aprel 2019.
  59. ^ a b "MIT a'zosi Marcia Bartusiak bizning koinotdagi o'rnimizni tushunish to'g'risida". www.wbur.org. Olingan 12 aprel 2019.
  60. ^ a b Zigfrid, Tom (2013 yil 23-dekabr). "50 yildan so'ng, qora tuynuklarni kim nomlaganini aytish qiyin". Fan yangiliklari. Arxivlandi asl nusxasidan 2017 yil 9 martda. Olingan 24 sentyabr 2017. Ko'rinib turibdiki, "qora tuynuk" yorlig'i 1964 yil yanvar oyida Klivlendda Amerika Ilm-fanni rivojlantirish assotsiatsiyasining yig'ilishida ham yopishtirilgan edi. Science News Letter muxbiri Ann Ewing ushbu uchrashuvdan qanday qilib kuchli gravitatsion maydon o'z-o'zidan yulduz qulashiga olib kelishi mumkinligini tasvirlab berdi. "Keyin bunday yulduz koinotda" qora tuynuk "hosil qiladi", deb yozdi Eving
  61. ^ Brown, Emma (3 avgust 2010). "Ann E. Ewing, jurnalist birinchi bo'lib qora tuynuklar haqida xabar berdi". Boston.com. Arxivlandi asl nusxasidan 2017 yil 24 sentyabrda. Olingan 24 sentyabr 2017.
  62. ^ "Kashshof fizik Jon Uiler 96 yoshida vafot etdi". Ilmiy Amerika. Arxivlandi asl nusxasidan 2016 yil 28 noyabrda. Olingan 27 noyabr 2016.
  63. ^ Overbye, Dennis (2008 yil 14 aprel). "Jon A. Uiler," Qora tuynuk "atamasini yaratgan fizik, 96 yoshida vafot etdi". The New York Times. Arxivlandi asl nusxasidan 2016 yil 22-noyabrda. Olingan 27 noyabr 2016.
  64. ^ Kerol 2004 yil, p. 253
  65. ^ Reynolds, Kristofer S. (yanvar 2019). "Qora tuynuklarni kuzatish aylanmoqda". Tabiat astronomiyasi. 3 (1): 41–47. arXiv:1903.11704. Bibcode:2019NatAs ... 3 ... 41R. doi:10.1038 / s41550-018-0665-z. ISSN  2397-3366. S2CID  85543351.
  66. ^ Torn, K. S.; Narx, R. H. (1986). Qora tuynuklar: membrana paradigmasi. Yel universiteti matbuoti. ISBN  978-0-300-03770-8.
  67. ^ Anderson, Uorren G. (1996). "Qora tuynuk haqida ma'lumot yo'qotish muammosi". Usenet fizikasi bo'yicha savollar. Arxivlandi asl nusxasi 2009 yil 22 yanvarda. Olingan 24 mart 2009.
  68. ^ Preskill, J. (1994 yil 21 oktyabr). Qora tuynuklar va ma'lumotlar: Kvant fizikasidagi inqiroz (PDF). Caltech nazariyasi seminari. Arxivlandi asl nusxasi (PDF) 2008 yil 18 mayda. Olingan 17 may 2009.
  69. ^ Xoking va Ellis 1973 yil, B ilova
  70. ^ Urug'lar, Maykl A.; Backman, Dana E. (2007). Astronomiya istiqbollari. O'qishni to'xtatish. p. 167. ISBN  978-0-495-11352-2. Arxivlandi asl nusxasidan 2016 yil 10 avgustda.
  71. ^ Shapiro, S. L.; Teukolskiy, S. A. (1983). Qora tuynuklar, oq mitti va neytron yulduzlari: ixcham jismlar fizikasi. John Wiley va Sons. p. 357. ISBN  978-0-471-87316-7.
  72. ^ Berger, B. K. (2002). "Spacetime singularlik uchun raqamli yondashuvlar". Nisbiylikdagi yashash sharhlari. 5 (1): 2002–1. arXiv:gr-qc / 0201056. Bibcode:2002LRR ..... 5 .... 1B. doi:10.12942 / lrr-2002-1. PMC  5256073. PMID  28179859.
  73. ^ Makklintok, J. E .; Shafi, R .; Narayan, R .; Remillard, R. A .; Devis, S. V.; Li, L.-X. (2006). "Kerr qora tuynugining aylanishi GRS 1915 + 105". Astrofizika jurnali. 652 (1): 518–539. arXiv:astro-ph / 0606076. Bibcode:2006ApJ ... 652..518M. doi:10.1086/508457. S2CID  1762307.
  74. ^ a b v Abbott, B. P.; va boshq. (LIGO Ilmiy hamkorlik va Bokira qizlari bilan hamkorlik ) (2017 yil 1-iyun). "GW170104: Redshift 0,2 da 50-Quyosh massali ikkilik qora tuynuk koalensatsiyasini kuzatish". Jismoniy tekshiruv xatlari. 118 (22): 221101. arXiv:1706.01812. Bibcode:2017PhRvL.118v1101A. doi:10.1103 / PhysRevLett.118.221101. PMID  28621973. S2CID  206291714.
  75. ^ Abbott, B. P.; va boshq. (LIGO Ilmiy hamkorlik & Bokira qizlari bilan hamkorlik ) (16 oktyabr 2017 yil). "GW170817: Ikkilik neytron yulduz ilhomlantiruvchi kuchidan tortishish to'lqinlarini kuzatish". Jismoniy tekshiruv xatlari. 119 (16): 161101. arXiv:1710.05832. Bibcode:2017PhRvL.119p1101A. doi:10.1103 / PhysRevLett.119.161101. PMID  29099225.
  76. ^ Wald 1984 yil, 124-125-betlar
  77. ^ Saa, Alberto; Santarelli, Rafael (2011 yil 18-iyul). "Ekstremal Kerr-Nyuman qora tuynugini yo'q qilish". Jismoniy sharh D. 84 (2): 027501. arXiv:1105.3950. Bibcode:2011PhRvD..84b7501S. doi:10.1103 / PhysRevD.84.027501. S2CID  118487989.
  78. ^ Misner, Thorne & Wheeler 1973 yil, p. 848
  79. ^ Devies, Pol (1992). Yangi fizika (tasvirlangan tahrir). Kembrij universiteti matbuoti. p. 26. ISBN  978-0-521-43831-5. 26-betning ko'chirmasi
  80. ^ Fleysh, Doniyor; Kregenov, Yuliya (2013). Astronomiya matematikasi bo'yicha talabalar uchun qo'llanma (tasvirlangan tahrir). Kembrij universiteti matbuoti. p. 168. ISBN  978-1-107-03494-5. 168-betning ko'chirmasi
  81. ^ Wheeler 2007 yil, p. 179
  82. ^ Kerol 2004 yil, Ch. 5.4 va 7.3
  83. ^ "Yagona xususiyatlar va qora tuynuklar> chaqmoq ranglari va sabab tuzilishi". plato.stanford.edu. Stenford falsafa entsiklopediyasi. Olingan 11 mart 2018.
  84. ^ Kerol 2004 yil, p. 217
  85. ^ Kerol 2004 yil, p. 218
  86. ^ "Qora tuynuk ichida". Olam va uning sirlarini bilish. Arxivlandi asl nusxasi 2009 yil 23 aprelda. Olingan 26 mart 2009.
  87. ^ "Qora tuynuklarga tushib qolsangiz, sizga nima bo'ladi". math.ucr.edu. Jon Baez. Olingan 11 mart 2018.
  88. ^ Kerol 2004 yil, p. 222
  89. ^ "Tomosha qiling: astronavtning qora teshikka tushishining uchta usuli". 2014 yil 1-fevral. Olingan 13 mart 2018.
  90. ^ Emparan, R .; Haqiqatan ham, H. S. (2008). "Yuqori o'lchamdagi qora teshiklar". Nisbiylikdagi yashash sharhlari. 11 (6): 6. arXiv:0801.3471. Bibcode:2008LRR .... 11 .... 6E. doi:10.12942 / lrr-2008-6. PMC  5253845. PMID  28163607.
  91. ^ Obers, N. A. (2009). Papantonopulos, Eleftherios (tahrir). Yuqori o'lchovli tortishishdagi qora teshiklar (PDF). Qora teshiklar fizikasi. Fizikadan ma'ruza matnlari. 769. 211–258 betlar. arXiv:0802.0519. Bibcode:2009LNP ... 769 ..... P. doi:10.1007/978-3-540-88460-6. ISBN  978-3-540-88459-0.
  92. ^ Xoking va Ellis 1973 yil, Ch. 9.3
  93. ^ Smarr, L. (1973). "Zaryadlangan aylanuvchi qora teshiklarning sirt geometriyasi". Jismoniy sharh D. 7 (2): 289–295. Bibcode:1973PhRvD ... 7..289S. doi:10.1103 / PhysRevD.7.289.
  94. ^ Visser, M. (2009 yil 22-yanvar). "Kerr kosmik vaqti: qisqacha kirish". Uiltshirda, D.L.; Visser, M .; Skott, SM (tahr.). Kerrning bo'sh vaqti: Umumiy nisbiylikda qora teshiklarni aylantirish. Kembrij universiteti matbuoti. arXiv:0706.0622. ISBN  978-052188512-6.
  95. ^ Delgado, JF M.; Herdeiro, C.A. R.; Radu, E. (2018). "Sinxronlangan sochlar bilan Kerr qora teshiklari uchun ufq geometriyasi". Jismoniy sharh D. 97 (12): 124012. arXiv:1804.04910. Bibcode:2018PhRvD..97l4012D. doi:10.1103 / PhysRevD.97.124012. hdl:10773/24121. S2CID  55732213.
  96. ^ Kerol 2004 yil, p. 205
  97. ^ Kerol 2004 yil, 264-265 betlar
  98. ^ Kerol 2004 yil, p. 252
  99. ^ "Qora tuynuklarning o'lchamlari? Qora tuynuk qanchalik katta?". Osmon va teleskop. 2014 yil 22-iyul. Olingan 9 oktyabr 2018.
  100. ^ Lyuis, G. F.; Kwan, J. (2007). "Orqaga qaytishning iloji yo'q: Shvartsild voqeasi gorizonti ostida yashash vaqtini maksimal darajada oshirish". Avstraliya Astronomiya Jamiyati nashrlari. 24 (2): 46–52. arXiv:0705.1029. Bibcode:2007 yil PASA ... 24 ... 46L. doi:10.1071 / AS07012. S2CID  17261076.
  101. ^ Wheeler 2007 yil, p. 182
  102. ^ Kerol 2004 yil, 257–259 va 265–266-betlar
  103. ^ Droz, S .; Isroil, V .; Morsink, S. M. (1996). "Qora tuynuklar: ichki voqea". Fizika olami. 9 (1): 34–37. Bibcode:1996 yil PhyW .... 9 ... 34D. doi:10.1088/2058-7058/9/1/26.
  104. ^ Kerol 2004 yil, p. 266
  105. ^ Puasson, E .; Isroil, V. (1990). "Qora tuynuklarning ichki tuzilishi". Jismoniy sharh D. 41 (6): 1796–1809. Bibcode:1990PhRvD..41.1796P. doi:10.1103 / PhysRevD.41.1796. PMID  10012548.
  106. ^ Wald 1984 yil, p. 212
  107. ^ Hamade, R. (1996). "Qora tuynuklar va kvant tortishish kuchi". Kembrijning nisbiyligi va kosmologiyasi. Kembrij universiteti. Arxivlandi asl nusxasi 2009 yil 7 aprelda. Olingan 26 mart 2009.
  108. ^ Palmer, D. "Astrofizikdan so'rang: Kvant tortishish kuchi va qora tuynuklar". NASA. Arxivlandi asl nusxasi 2009 yil 28 martda. Olingan 26 mart 2009.
  109. ^ a b Nitta, Daisuke; Chiba, Takeshi; Sugiyama, Naoshi (2011 yil sentyabr). "To'qnashgan qora tuynuklarning soyalari". Jismoniy sharh D. 84 (6): 063008. arXiv:1106.2425. Bibcode:2011PhRvD..84f3008N. doi:10.1103 / PhysRevD.84.063008. S2CID  119264596.
  110. ^ Bardin, Jeyms M.; Matbuot, Uilyam H.; Teukolskiy, Shoul A. (1972 yil 1-dekabr). "Aylanadigan qora tuynuklar: mahalliy darajada noturg'un ramkalar, energiya olish va skalyar sinxrotron nurlanishi". Astrofizika jurnali. 178: 347–370. Bibcode:1972ApJ ... 178..347B. doi:10.1086/151796.
  111. ^ "Qora tuynuk kalkulyatori". Fabio Pakuchchi. Olingan 29 sentyabr 2020.
  112. ^ a b Visser, Matt (2007). "Kerr kosmik vaqti: qisqacha kirish". 35-bet, 3-rasm. arXiv:0706.0622 [gr-qc ].
  113. ^ Kerol 2004 yil, Ch. 6.6
  114. ^ Kerol 2004 yil, Ch. 6.7
  115. ^ Misner, Thorne & Wheeler 1973 yil
  116. ^ Bardin, J. M. (1972). "Aylanadigan qora tuynuklar: mahalliy darajada noturg'un ramkalar, energiya olish va skalyar sinxrotron nurlanish". Astrofizika jurnali. 178: 347–370. Bibcode:1972ApJ ... 178..347B. doi:10.1086/151796.
  117. ^ Eynshteyn, A. (1939). "Ko'p tortishish massasidan iborat sferik simmetriya bilan statsionar tizim to'g'risida" (PDF). Matematika yilnomalari. 40 (4): 922–936. Bibcode:1939AnMat..40..922E. doi:10.2307/1968902. JSTOR  1968902. S2CID  55495712.
  118. ^ Kerr, R. P. (2009). "Kerr va Kerr-Shild metrikalari". Uiltzirda D. L.; Visser, M .; Skott, S. M. (tahrir). Kerrning bo'sh vaqti. Kembrij universiteti matbuoti. arXiv:0706.1109. Bibcode:2007arXiv0706.1109K. ISBN  978-0-521-88512-6.
  119. ^ Xoking, S. V.; Penrose, R. (1970 yil yanvar). "Gravitatsion qulash va kosmologiyaning o'ziga xos xususiyatlari". Qirollik jamiyati materiallari A. 314 (1519): 529–548. Bibcode:1970RSPSA.314..529H. doi:10.1098 / rspa.1970.0021. JSTOR  2416467.
  120. ^ a b v Pakuchchi, F.; Ferrara, A .; Grazian, A .; Fiore, F.; Giallongo, E. (2016). "Dastlabki koinotdagi to'g'ridan-to'g'ri qulab tushgan qora tuynukka nomzodlarni CANDELS / GOODS-S-da birinchi aniqlash". Dushanba Yo'q. R. Astron. Soc. 459 (2): 1432. arXiv:1603.08522. Bibcode:2016MNRAS.459.1432P. doi:10.1093 / mnras / stw725. S2CID  118578313.
  121. ^ a b Carr, B. J. (2005). "Dastlabki qora tuynuklar: ular mavjudmi va foydalimi?". Suzuki shahrida H.; Yokoyama, J .; Suto, Y .; Sato, K. (tahrir). Astrofizika va kosmologiya zarralarini ufurish. Universal Academy Press. astro-ph / 0511743-bet. arXiv:astro-ph / 0511743. Bibcode:2005astro.ph.11743C. ISBN  978-4-946443-94-7.
  122. ^ a b v Kerol 2004 yil, 5.8-bo'lim
  123. ^ "Rassomning supermassiv qora tuynuk urug'i haqidagi taassuroti". Arxivlandi asl nusxasidan 2016 yil 30 mayda. Olingan 27 may 2016.
  124. ^ a b v Ris, M. J .; Volonteri, M. (2007). Karas, V .; Matt, G. (tahrir). Massiv qora tuynuklar: shakllanishi va evolyutsiyasi. Xalqaro Astronomiya Ittifoqi materiallari. 238. 51-58 betlar. arXiv:astro-ph / 0701512. Bibcode:2007IAUS..238 ... 51R. doi:10.1017 / S1743921307004681. ISBN  978-0-521-86347-6. S2CID  14844338.
  125. ^ Bañados, Eduardo; Venemans, Bram P.; Mazzuchcheli, Chiara; Farina, Emanuele P.; Valter, Fabian; Vang, Feyj; Decarli, Roberto; Stern, Doniyor; Fan, Xiaohui; Devis, Frederik B.; Hennavi, Jozef F. (1 yanvar 2018). "7.5 qizil siljishida sezilarli darajada neytral koinotdagi 800 million quyosh massasi bo'lgan qora tuynuk". Tabiat. 553 (7689): 473–476. arXiv:1712.01860. Bibcode:2018Natur.553..473B. doi:10.1038 / tabiat25180. PMID  29211709. S2CID  205263326.
  126. ^ Penrose, R. (2002). "Gravitatsiyaviy kollaps: umumiy nisbiylikning roli" (PDF). Umumiy nisbiylik va tortishish kuchi. 34 (7): 1141. Bibcode:2002GReGr..34.1141P. doi:10.1023 / A: 1016578408204. S2CID  117459073. Arxivlandi asl nusxasi (PDF) 2013 yil 26 mayda.
  127. ^ Filipp Gibbs. "Katta portlash qora tuynukmi?". Jon Baez. Olingan 16 mart 2018.
  128. ^ Giddings, S. B .; Tomas, S. (2002). "Qora tuynuk fabrikalari sifatida yuqori energiya to'qnashuvi: Qisqa masofalar fizikasining oxiri". Jismoniy sharh D. 65 (5): 056010. arXiv:hep-ph / 0106219. Bibcode:2002PhRvD..65e6010G. doi:10.1103 / PhysRevD.65.056010. S2CID  1203487.
  129. ^ Harada, T. (2006). "Qora tuynuk minimal massasi bormi?". Jismoniy sharh D. 74 (8): 084004. arXiv:gr-qc / 0609055. Bibcode:2006PhRvD..74h4004H. doi:10.1103 / PhysRevD.74.084004. S2CID  119375284.
  130. ^ Arkani-Hamed, N .; Dimopulos, S .; Dvali, G. (1998). "Ierarxiya muammosi va millimetrdagi yangi o'lchovlar". Fizika maktublari B. 429 (3–4): 263–272. arXiv:hep-ph / 9803315. Bibcode:1998PhLB..429..263A. doi:10.1016 / S0370-2693 (98) 00466-3. S2CID  15903444.
  131. ^ LHC xavfsizligini baholash guruhi (2008). "LHC to'qnashuvi xavfsizligini ko'rib chiqish" (PDF). Fizika jurnali G: Yadro fizikasi. 35 (11): 115004. arXiv:0806.3414. Bibcode:2008 yil JPhG ... 35k5004E. doi:10.1088/0954-3899/35/11/115004. S2CID  53370175. Arxivlandi (PDF) asl nusxasidan 2010 yil 14 aprelda.
  132. ^ Cavaglià, M. (2010). "Qora tuynuk fabrikalari sifatida zarrachalar tezlatgichlari?". Eynshteyn-Onlayn. 4: 1010. Arxivlangan asl nusxasi 2013 yil 8 mayda. Olingan 8 may 2013.
  133. ^ Vesperini, E .; McMillan, S. L. V.; d'Erkole, A .; va boshq. (2010). "Erta globus klasterlaridagi oraliq-ommaviy qora teshiklar". Astrofizik jurnal xatlari. 713 (1): L41-L44. arXiv:1003.3470. Bibcode:2010ApJ ... 713L..41V. doi:10.1088 / 2041-8205 / 713/1 / L41. S2CID  119120429.
  134. ^ Zvart, S. F. P.; Baumgardt, X.; Hut, P.; va boshq. (2004). "Zich yosh yulduzlar klasterlarida qochib ketgan to'qnashuvlar natijasida katta qora tuynuklarning paydo bo'lishi". Tabiat. 428 (6984): 724–726. arXiv:astro-ph / 0402622. Bibcode:2004 yil natur.428..724P. doi:10.1038 / tabiat02448. PMID  15085124. S2CID  4408378.
  135. ^ O'Leary, R. M.; Rasio, F. A .; Fregeau, J. M .; va boshq. (2006). "Zich yulduzlar klasterlaridagi qora teshiklarning ikkilik birlashishi va o'sishi". Astrofizika jurnali. 637 (2): 937–951. arXiv:astro-ph / 0508224. Bibcode:2006ApJ ... 637..937O. doi:10.1086/498446. S2CID  1509957.
  136. ^ Sahifa, D. N. (2005). "Xoking radiatsiyasi va qora tuynuk termodinamikasi". Yangi fizika jurnali. 7 (1): 203. arXiv:hep-th / 0409024. Bibcode:2005 yil NJPh .... 7..203P. doi:10.1088/1367-2630/7/1/203. S2CID  119047329.
  137. ^ Kerol 2004 yil, Ch. 9.6
  138. ^ Siegel, Etan (2017). "Etondan so'rang: Qora tuynuklar bug'langandan tezroq o'sadimi?". Forbes ("Portlash bilan boshlanadi" blogi). Olingan 17 mart 2018.
  139. ^ Sivaram, C. (2001). "Qora tuynukdagi Hawking radiatsiyasi hech qachon kuzatilmasligi mumkin!". Umumiy nisbiylik va tortishish kuchi. 33 (2): 175–181. Bibcode:2001GReGr..33..175S. doi:10.1023 / A: 1002753400430. S2CID  118913634.
  140. ^ "Qora tuynuklarni bug'langanda?". Eynshteyn onlayn. Maks Plank nomidagi Gravitatsion fizika instituti. 2010. Arxivlangan asl nusxasi 2011 yil 22-iyulda. Olingan 12 dekabr 2010.
  141. ^ Giddings, S. B .; Mangano, M. L. (2008). "TeV miqyosidagi barqaror qora tuynuklarning astrofizik oqibatlari". Jismoniy sharh D. 78 (3): 035009. arXiv:0806.3381. Bibcode:2008PhRvD..78c5009G. doi:10.1103 / PhysRevD.78.035009. S2CID  17240525.
  142. ^ Peskin, M. E. (2008). "Katta adron kollayderida dunyoning oxiri bormi?". Fizika. 1: 14. Bibcode:2008 yil PHOJ ... 1 ... 14P. doi:10.1103 / Fizika.1.14.
  143. ^ Fichtel, C. E.; Bertsch, D. L .; Dingus, B. L .; va boshq. (1994). "Yuqori energiyali gamma-nurli mikrosaniyadagi portlashlar uchun energetik gamma-nurli tajriba teleskopi (EGRET) ma'lumotlarini qidirish". Astrofizika jurnali. 434 (2): 557–559. Bibcode:1994ApJ ... 434..557F. doi:10.1086/174758.
  144. ^ Naeye, R. "Fundamental fizikani sinovdan o'tkazish". NASA. Arxivlandi asl nusxasidan 2008 yil 31 avgustda. Olingan 16 sentyabr 2008.
  145. ^ a b Frautschi, S. (1982). "Kengayib borayotgan koinotdagi entropiya". Ilm-fan. 217 (4560): 593–599. Bibcode:1982Sci ... 217..593F. doi:10.1126 / science.217.4560.593. PMID  17817517. S2CID  27717447. 596-betga qarang: jadval 1 va ushbu sahifadagi "qora tuynukning parchalanishi" bo'limi va oldingi jumla.
  146. ^ Sahifa, Don N. (1976). "Qora tuynukdan chiqadigan zarrachalar tezligi: zaryadsiz, charchamaydigan teshikdan massasiz zarralar". Jismoniy sharh D. 13 (2): 198–206. Bibcode:1976PhRvD..13..198P. doi:10.1103 / PhysRevD.13.198.. Xususan (27) tenglamaga qarang.
  147. ^ "Qora teshiklar | Ilmiy missiya direktorligi". NASA. Olingan 17 mart 2018.
  148. ^ "2017 yil aprel oyidagi kuzatuvlar". Voqealar Horizon teleskopi. Olingan 11 aprel 2019.
  149. ^ Xayr, Dennis (2019 yil 10-aprel). "Zulmat ko'rinib turibdi, nihoyat: Astronomlar birinchi bo'lib qora tuynuk tasvirini olishdi". The New York Times. Olingan 11 aprel 2019.
  150. ^ AP (10-aprel, 2019-yil). "Astronomlar qora tuynukning birinchi rasmini ochib berishdi". The New York Times (video). Olingan 11 aprel 2019.
  151. ^ Doeleman, Shep (2016 yil 4-aprel). "Voqealar ufq teleskopi: qora tuynukni tasvirga olish va vaqtni aniqlash". Fizika @ Berkli. Hodisa soat 46:50 da sodir bo'ladi. Arxivlandi asl nusxasidan 2016 yil 1 dekabrda. Olingan 8 iyul 2016.
  152. ^ Grossman, Liza; Conover, Emily (10 aprel 2019). "Qora tuynuk haqidagi birinchi rasm astrofizikaning yangi davrini ochadi". Fan yangiliklari. Olingan 11 aprel 2019.
  153. ^ "Qora tuynuk haqidagi birinchi rasm astrofizikaning yangi davrini ochadi". Fan yangiliklari. 10 aprel 2019 yil. Olingan 30 sentyabr 2019.
  154. ^ Jonson, M. D .; Baliq, V. L .; Doeleman, S. S .; Marrone, D. P.; Plambek, R. L .; Wardle, J. F. C .; Akiyama, K .; Asada, K .; Beaudoin, C. (2015 yil 4-dekabr). "Sagittarius A * hodisasi gorizontiga yaqin joylashgan magnit maydon tuzilishi va o'zgaruvchanligi". Ilm-fan. 350 (6265): 1242–1245. arXiv:1512.01220. Bibcode:2015 yil ... 350.1242J. doi:10.1126 / science.aac7087. PMID  26785487. S2CID  21730194.
  155. ^ "Event Horizon teleskopi Somon yo'lining markaziy qora tuynugidagi magnit maydonlarni ochib beradi". cfa.harvard.edu. 2015 yil 3-dekabr. Arxivlandi asl nusxasidan 2015 yil 31 dekabrda. Olingan 12 yanvar 2016.
  156. ^ O. Straub, F.H. Vinsent, M.A. Abramovich, E. Gurgoulxon, T. Paumard, "Sgr A * dagi qora tuynuk siluetini ion tori bilan modellashtirish", Astron. Astroph 543 (2012) A8
  157. ^ Xayr, Dennis (2016 yil 11-fevral). "Fiziklar Eynshteynning haqligini isbotlab, tortishish to'lqinlarini aniqlaydilar". The New York Times. Arxivlandi asl nusxasidan 2016 yil 11 fevralda. Olingan 11 fevral 2016.
  158. ^ Abbott, Benjamin P.; va boshq. (LIGO Ilmiy hamkorlik & Bokira qizlari bilan hamkorlik ) (2016 yil 11-fevral). "Ikkilik qora tuynukni birlashtirish xususiyatlari GW150914". Jismoniy tekshiruv xatlari. 116 (24): 241102. arXiv:1602.03840. Bibcode:2016PhRvL.116x1102A. doi:10.1103 / PhysRevLett.116.241102. PMID  27367378. S2CID  217406416.
  159. ^ a b Kardoso, V .; Franzin, E .; Pani, P. (2016). "Gravitatsiyaviy to'lqin qo'ng'irog'i voqea gorizontining zondimi?". Jismoniy tekshiruv xatlari. 116 (17): 171101. arXiv:1602.07309. Bibcode:2016PhRvL.116q1101C. doi:10.1103 / PhysRevLett.116.171101. PMID  27176511. S2CID  206273829.
  160. ^ Abbott, Benjamin P.; va boshq. (LIGO Ilmiy hamkorlik & Bokira qizlari bilan hamkorlik ) (2016 yil 11-fevral). "GW150914 bilan umumiy nisbiylik testlari". Jismoniy tekshiruv xatlari. 116 (22): 221101. arXiv:1602.03841. Bibcode:2016PhRvL.116v1101A. doi:10.1103 / PhysRevLett.116.221101. PMID  27314708. S2CID  217275338. Arxivlandi asl nusxasi 2016 yil 15 fevralda. Olingan 12 fevral 2016.
  161. ^ Abbott, B. P.; va boshq. (LIGO Ilmiy hamkorlik & Bokira qizlari bilan hamkorlik ) (2016). "Ikki tomonlama qora tuynukni birlashtirishning astrofizik oqibatlari GW150914". Astrofizlar. J. Lett. 818 (2): L22. arXiv:1602.03846. Bibcode:2016ApJ ... 818L..22A. doi:10.3847 / 2041-8205 / 818/2 / L22. hdl:1826/11732. Arxivlandi asl nusxasidan 2016 yil 16 martda.
  162. ^ a b Gillessen, S .; Eyzenhauer, F.; Trippe, S .; va boshq. (2009). "Galaktik markazdagi ulkan qora tuynuk atrofida yulduzlar atrofida aylanishlarni kuzatish". Astrofizika jurnali. 692 (2): 1075–1109. arXiv:0810.4674. Bibcode:2009ApJ ... 692.1075G. doi:10.1088 / 0004-637X / 692/2/1075. S2CID  1431308.
  163. ^ a b Ghes, A. M.; Klein, B. L .; Morris, M.; va boshq. (1998). "Sagittarius yaqinidagi yuqori to'g'ri ‐ harakat yulduzlari A *: bizning galaktikamiz markazida supermassiv qora tuynuk uchun dalillar". Astrofizika jurnali. 509 (2): 678–686. arXiv:astro-ph / 9807210. Bibcode:1998ApJ ... 509..678G. doi:10.1086/306528. S2CID  18243528.
  164. ^ Broderik, Avery; Loeb, Ibrohim; Narayan, Ramesh (2009 yil avgust). "Sagittarius A * ning voqea ufqi". Astrofizika jurnali. 701 (2): 1357–1366. arXiv:0903.1105. Bibcode:2009ApJ ... 701.1357B. doi:10.1088 / 0004-637X / 701/2/1357. S2CID  12991878.
  165. ^ a b "NASA NuSTAR qora tuynuk nurining kamdan-kam xiralashishini ko'rmoqda". NASA. 12 Avgust 2014. Arxivlangan asl nusxasi 2014 yil 13 avgustda. Olingan 12 avgust 2014.
  166. ^ "Tadqiqotchilar qora tuynukning aylanish energiyasining dinamikasini aniqladilar". Olingan 17 sentyabr 2018.
  167. ^ Mark, Jan-Alen (1996 yil 1 mart). "Shvartsyuldagi qora tuynuk uchun geodezik tenglamalarni echishning qisqa usuli". Klassik va kvant tortishish kuchi. 13 (3): 393–402. arXiv:gr-qc / 9505010. Bibcode:1996CQGra..13..393M. doi:10.1088/0264-9381/13/3/007. ISSN  0264-9381. S2CID  119508131.
  168. ^ a b Makklintok, J. E .; Remillard, R. A. (2006). "Qora teshikli ikkiliklar". Lyunda, V.; van der Klis, M. (tahrir). Yilni rentgen nurlari manbalari. p. 157. arXiv:astro-ph / 0306213. Bibcode:2006csxs.book..157M. ISBN  978-0-521-82659-4. 4.1.5-bo'lim.
  169. ^ "Qora tuynukning qudratli samolyotlariga nima kuch beradi?". Ilm | AAAS. 2014 yil 19-noyabr. Olingan 19 mart 2018.
  170. ^ a b v d e f g h men Selotti, A .; Miller, J. C .; Sciama, D. W. (1999). "Qora tuynuklar mavjudligiga astrofizik dalillar" (PDF). Klassik va kvant tortishish kuchi. 16 (12A): A3-A21. arXiv:astro-ph / 9912186. Bibcode:1999CQGra..16A ... 3C. doi:10.1088 / 0264-9381 / 16 / 12A / 301. S2CID  17677758.
  171. ^ Qish, L. M .; Mushotzky, R. F.; Reynolds, S. S. (2006). "XMM ‐ Nyuton arxivida ultraluminous rentgen populyatsiyasini yaqin galaktikalarda o'rganish". Astrofizika jurnali. 649 (2): 730–752. arXiv:astro-ph / 0512480. Bibcode:2006ApJ ... 649..730W. doi:10.1086/506579. S2CID  118445260.
  172. ^ [email protected]. "Xabbl diskni to'g'ridan-to'g'ri qora tuynuk atrofida kuzatadi". www.spacetelescope.org. Arxivlandi asl nusxasidan 2016 yil 8 martda. Olingan 7 mart 2016.
  173. ^ Muñoz, Xose A .; Mediavilla, Evencio; Kochanek, Kristofer S.; Falco, Emilio; Mosquera, Ana-Mariya (2011 yil 1-dekabr). "Hubble kosmik teleskopi bilan tortishish ob'ektivining xromatikligini o'rganish". Astrofizika jurnali. 742 (2): 67. arXiv:1107.5932. Bibcode:2011ApJ ... 742 ... 67M. doi:10.1088 / 0004-637X / 742/2/67. S2CID  119119359.
  174. ^ Bolton, C. T. (1972). "Cygnus X-1ni HDE 226868 bilan aniqlash". Tabiat. 235 (5336): 271–273. Bibcode:1972 yil 23-35..271B. doi:10.1038 / 235271b0. S2CID  4222070.
  175. ^ Vebster, B. L .; Murdin, P. (1972). "Cygnus X-1 - og'ir sherigiga ega bo'lgan spektroskopik ikkilikmi?". Tabiat. 235 (5332): 37–38. Bibcode:1972 yil 235 ... 37W. doi:10.1038 / 235037a0. S2CID  4195462.
  176. ^ Rolston, B. (1997 yil 10-noyabr). "Birinchi qora tuynuk". Byulleten. Toronto universiteti. Arxivlandi asl nusxasi 2008 yil 2 mayda. Olingan 11 mart 2008.
  177. ^ Shipman, H. L. (1975 yil 1-yanvar). "Cygnus X-1 qora tuynuk uchun dalillarning uch yulduzli modellarining ishonib bo'lmaydigan tarixi". Astrofizik xatlar. 16 (1): 9–12. Bibcode:1975ApL .... 16 .... 9S.
  178. ^ "NASA olimlari ma'lum bo'lgan eng kichik qora tuynukni aniqladilar" (Matbuot xabari). Goddard kosmik parvoz markazi. 1 Aprel 2008. Arxivlangan asl nusxasi 2008 yil 27 dekabrda. Olingan 14 mart 2009.
  179. ^ Krolik, J. H. (1999). Faol Galaktik yadrolar. Prinston universiteti matbuoti. Ch. 1.2. ISBN  978-0-691-01151-6.
  180. ^ Sparke, L. S.; Gallagher, J. S. (2000). Koinotdagi Galaktikalar: Kirish. Kembrij universiteti matbuoti. Ch. 9.1. ISBN  978-0-521-59740-1.
  181. ^ Chou, Felicia; Anderson, Janet; Vatske, Megan (2015 yil 5-yanvar). "RELEASE 15-001 - NASA Chandra Somon yo'lining qora tuynugidan rekord darajadagi portlashni aniqladi". NASA. Arxivlandi asl nusxasidan 2015 yil 6 yanvarda. Olingan 6 yanvar 2015.
  182. ^ Kormendi, J .; Richstone, D. (1995). "Ichki chegaralar - Galaktik yadrolarda supermassiv qora teshiklarni izlash". Astronomiya va astrofizikaning yillik sharhi. 33 (1): 581–624. Bibcode:1995ARA & A..33..581K. doi:10.1146 / annurev.aa.33.090195.003053.
  183. ^ King, A. (2003). "Qora tuynuklar, Galaxy shakllanishi va MBH-σ aloqasi". Astrofizik jurnal xatlari. 596 (1): 27–29. arXiv:astro-ph / 0308342. Bibcode:2003ApJ ... 596L..27K. doi:10.1086/379143. S2CID  9507887.
  184. ^ Ferrarese, L .; Merritt, D. (2000). "Supermassiv qora tuynuklar va ularning mezbon galaktikalari o'rtasidagi asosiy munosabatlar". Astrofizik jurnal xatlari. 539 (1): 9–12. arXiv:astro-ph / 0006053. Bibcode:2000ApJ ... 539L ... 9F. doi:10.1086/312838. S2CID  6508110.
  185. ^ "Qora tuynukli kechki ovqat tez yaqinlashmoqda". ESO press-relizi. Arxivlandi asl nusxasidan 2012 yil 13 fevralda. Olingan 6 fevral 2012.
  186. ^ a b Bozza, V. (2010). "Qora tuynuklarning tortishish ob'ektivi". Umumiy nisbiylik va tortishish kuchi. 42 (9): 2269–2300. arXiv:0911.2187. Bibcode:2010GReGr..42.2269B. doi:10.1007 / s10714-010-0988-2. S2CID  118635353.
  187. ^ Kovach, Z.; Cheng, K. S .; Harko, T. (2009). "Yulduz massasi qora tuynuklar kvark yulduzlari bo'lishi mumkinmi?". Qirollik Astronomiya Jamiyatining oylik xabarnomalari. 400 (3): 1632–1642. arXiv:0908.2672. Bibcode:2009MNRAS.400.1632K. doi:10.1111 / j.1365-2966.2009.15571.x. S2CID  18263809.
  188. ^ Kusenko, A. (2006). "Supersimetrik Q-to'plarning xususiyatlari va imzolari". arXiv:hep-ph / 0612159.
  189. ^ Xansson, J .; Sandin, F. (2005). "Preon yulduzlari: kosmik ixcham ob'ektlarning yangi klassi". Fizika maktublari B. 616 (1–2): 1–7. arXiv:astro-ph / 0410417. Bibcode:2005 PHLB..616 .... 1H. doi:10.1016 / j.physletb.2005.04.034. S2CID  119063004.
  190. ^ Kiefer, C. (2006). "Kvant tortishish kuchi: umumiy kirish va so'nggi o'zgarishlar". Annalen der Physik. 15 (1–2): 129–148. arXiv:gr-qc / 0508120. Bibcode:2006 yil AnP ... 518..129K. doi:10.1002 / va.200510175. S2CID  12984346.
  191. ^ Skenderis, K .; Teylor, M. (2008). "Qora tuynuklar uchun fuzzbol taklifi". Fizika bo'yicha hisobotlar. 467 (4–5): 117. arXiv:0804.0552. Bibcode:2008 yil ... 467..117S. doi:10.1016 / j.physrep.2008.08.001. S2CID  118403957.
  192. ^ Choi, Charlz Q. (2018). "Qora tuynukka da'vogarlar haqiqatan ham g'alati kvant yulduzlari bo'lishi mumkin". Ilmiy Amerika. Olingan 17 mart 2018.
  193. ^ Ball, Philip (2005 yil 31 mart). "Qora tuynuklar" mavjud emas'". Tabiat. doi:10.1038 / yangiliklar050328-8.
  194. ^ Hawking, S. W. (1971). "To'qnashayotgan qora tuynuklardan tortishish nurlanishi". Jismoniy tekshiruv xatlari. 26 (21): 1344–1346. Bibcode:1971PhRvL..26.1344H. doi:10.1103 / PhysRevLett.26.1344.
  195. ^ a b Wald, R. M. (2001). "Qora teshiklarning termodinamikasi". Nisbiylikdagi yashash sharhlari. 4 (1): 6. arXiv:gr-qc / 9912119. Bibcode:2001LRR ..... 4 .... 6W. doi:10.12942 / lrr-2001-6. PMC  5253844. PMID  28163633.
  196. ^ Hooft, G. (2001). "Golografik printsip". Zichichida A. (tahrir). Fundamental fizika asoslari va asosiy voqealari. Fundamental fizika asoslari va muhim voqealari. Subnuclear series. 37. 72-100 betlar. arXiv:hep-th / 0003004. Bibcode:2001bhfp.conf ... 72T. doi:10.1142/9789812811585_0005. ISBN  978-981-02-4536-8. S2CID  119383028.
  197. ^ Strominger, A .; Vafa, C. (1996). "Bekenshteyn-Xoking entropiyasining mikroskopik kelib chiqishi". Fizika maktublari B. 379 (1–4): 99–104. arXiv:hep-th / 9601029. Bibcode:1996PhLB..379 ... 99S. doi:10.1016/0370-2693(96)00345-0. S2CID  1041890.
  198. ^ Carlip, S. (2009). "Qora teshiklarning termodinamikasi va statistik mexanika". Qora teshiklar fizikasi. Qora teshiklar fizikasi. Fizikadan ma'ruza matnlari. 769. 89-123 betlar. arXiv:0807.4520. Bibcode:2009LNP ... 769 ... 89C. doi:10.1007/978-3-540-88460-6_3. ISBN  978-3-540-88459-0. S2CID  15877702.
  199. ^ Xoking, S. V. "Xudo zar o'ynaydimi?". www.hawking.org.uk. Arxivlandi asl nusxasi 2012 yil 11 yanvarda. Olingan 14 mart 2009.
  200. ^ Giddings, S. B. (1995). "Qora tuynuk haqidagi paradoks". Zarralar, torlar va kosmologiya. Jons Xopkins 19-zarrachaning dolzarb muammolari bo'yicha seminar va PASCOS fanlararo simpozium 5. arXiv:hep-th / 9508151. Bibcode:1995 yil. .... 8151G.
  201. ^ a b Unruh, Uilyam G.; Uold, Robert M. (2017). "Axborotni yo'qotish". Fizikada taraqqiyot haqida hisobotlar. 80 (9): 092002. arXiv:1703.02140. Bibcode:2017RPPh ... 80i2002U. doi:10.1088 / 1361-6633 / aa778e. PMID  28585922. S2CID  39957660.
  202. ^ Mathur, S. D. (2011). Axborot paradoksi: nizolar va qarorlar. Lepton fotonining yuqori energiyadagi o'zaro ta'siriga bag'ishlangan XXV xalqaro simpozium. arXiv:1201.2079. Bibcode:2012 yil Prama..79.1059M. doi:10.1007 / s12043-012-0417-z.
  203. ^ Sahifa, Don N. (1993). "Qora tuynuk nurlanishidagi ma'lumotlar". Fizika. Ruhoniy Lett. 71 (23): 3743–3746. arXiv:hep-th / 9306083. Bibcode:1993PhRvL..71.3743P. CiteSeerX  10.1.1.267.174. doi:10.1103 / PhysRevLett.71.3743. PMID  10055062. S2CID  9363821.
  204. ^ Sahifa, Don N. (1993). "Kichik tizimning o'rtacha entropiyasi". Fizika. Ruhoniy Lett. 71 (9): 1291–1294. arXiv:gr-qc / 9305007. Bibcode:1993PhRvL..71.1291P. CiteSeerX  10.1.1.339.7694. doi:10.1103 / PhysRevLett.71.1291. PMID  10055503. S2CID  17058654.
  205. ^ Merali, Zeeya (2013 yil 3 aprel). "Astrofizika: teshikdagi olov!". Tabiat. 496 (7443): 20–23. Bibcode:2013 yil 499 ... 20M. doi:10.1038 / 496020a. PMID  23552926.
  206. ^ Uellette, Jennifer (2012 yil 21-dekabr). "Qora teshik xavfsizlik devorlari nazariy fiziklarni chalkashtirib yubordi". Ilmiy Amerika. Arxivlandi 2013 yil 9-noyabrdagi asl nusxadan. Olingan 29 oktyabr 2013. Dastlab nashr etilgan Arxivlandi 2014 yil 3-iyun kuni Orqaga qaytish mashinasi yilda Quanta jurnali, 2012 yil 21-dekabr.

Qo'shimcha o'qish

Ommabop o'qish

Universitet darsliklari va monografiyalari

Hujjatlarni ko'rib chiqish

Tashqi havolalar

Videolar