Suzish kompensatori (sho'ng'in) - Buoyancy compensator (diving)

Suzish kompensatori
DiverBC.jpg
Miloddan avvalgi kurtka sho'ng'in tsilindri
QisqartmaMiloddan avvalgi yoki BCD
Boshqa ismlarSuzishni nazorat qilish moslamasi
FoydalanadiG'avvosning umumiy suzuvchanligini sozlash va boshqarish uchun
Tegishli narsalarOrqa plita va qanot

A suzuvchi kompensator, shuningdek, a deb nomlangan suzishni boshqarish moslamasi, Miloddan avvalgi, BCD, stabilizator, stabilizator, pichoq, qanot yoki ABLJ dizayniga qarab, bu sho'ng'in uskunalari dalgıçlar o'rnatish uchun kiyib yuradigan pufak bilan neytral suzish suv osti va ijobiy suzish qobiliyati kerak bo'lganda, sirtda. Quvuruvchanlik quviqdagi havo hajmini sozlash orqali boshqariladi. Quviq, regulyatorning birinchi pog'onasidan, to'g'ridan-to'g'ri shu maqsadga bag'ishlangan kichik tsilindrdan yoki g'avvosning og'zidan og'zaki inflyatsiya klapani orqali past bosimli shlang orqali g'avvosning birlamchi nafas olish gaz ballonidan atrof-muhit bosimi gazi bilan to'ldiriladi.

Ular asosan suzib yurish qobiliyatini old tomonda, tanani o'rab turgan va g'avvos orqasida bo'lgan deb tasniflash mumkin. Bu ergonomikaga va kamroq darajada jihozning xavfsizligiga ta'sir qiladi. Ular, shuningdek, konstruktsiyaning ajralmas qismi sifatida suzuvchi siydik pufagi yoki strukturaviy korpus ichida qo'llab-quvvatlanadigan almashtiriladigan komponent sifatida keng tasniflanishi mumkin.

Suzish kompensatori sho'ng'in uskunasining ish qismlaridan biri bo'lib, u ish paytida mahorat va e'tiborni talab qiladi, chunki boshqarish butunlay qo'lda va sho'ng'in davomida sozlash talab qilinadi, chunki gaz sarfi tufayli og'irlik kamayadi va sho'ng'in kostyumi va BCD suzuvchanligi o'zgaradi chuqurlik. Nozik suzishni sozlash ochiq havoda nafasni boshqarish orqali amalga oshirilishi mumkin, bu esa BCD hajmini haqiqiy sozlash miqdorini kamaytiradi va malakali sho'ng'inchi atrofdan xabardor bo'lish va boshqa vazifalarni bajarish bilan neytral suzishni saqlash uchun tovushni sozlash qobiliyatini rivojlantiradi. Suzish kompensatori to'g'ri ishlatilganda ham muhim xavfsizlik vositasi, ham noto'g'ri ishlatilganda katta xavf tug'diradi.

Boshqarish qobiliyati qirqish samarali suzish taqsimotiga ham bog'liq balast og'irligi tarqatish. Bu ham amaliyotda olingan mahoratdir va to'g'ri tortish orqali kerakli gaz hajmini minimallashtirishga yordam beradi.

Funktsiya

Suzuvchanlik kompensatorining vazifasi - g'avvosning suv ostida yoki yuzasida suzish qobiliyatini bir oz salbiydan bir oz musbat oralig'ida sozlashiga imkon berish, rejalashtirilgan sho'ng'in chuqurligi oralig'ida neytral suzuvchanlikni saqlashga imkon berish va o'zgarishlarni qoplashdir. sho'ng'in paytida nafas olish gazini iste'mol qilish sababli og'irlikda. Bosqichli tsilindrlardan foydalanilganda, u shuningdek, ushbu tsilindrlarni tushirish va olish paytida og'irlik o'zgarishini qoplash uchun ishlatilishi mumkin. Suv kostyumlarining suzish quvvati o'zgarishi kostyumning hajmi va zichligiga va atrof-muhit bosimiga bog'liq, ammo qalin kostyumlar uchun 10 kg tartibda bo'lishi mumkin.

Komponentlar

Orqa plita yoki qanot miloddan avvalgi uslub va suvosti to'plami
  1. Regulyatorning birinchi bosqichi
  2. Shiling valfi
  3. Yelkali kamarlar
  4. Quvuruvchi kompensator pufagi
  5. Rölyef va pastki qo'lda tushirish valfi
  6. Regulyatorning ikkinchi bosqichlari ("ahtapot" bilan)
  7. Konsol (bosim o'lchagich, chuqurlik o'lchagich va kompas)
  8. Quruq kostyumli shamollatuvchi shlang
  9. Orqa plita
  10. Miloddan avvalgi shamollatuvchi shlang
  11. Og'zaki inflyatsiya og'zi va qo'lda tashlanadigan valf
  12. Tarmoqli belbog '
  13. Bel tasmasi

Barcha suzish kompensatorlari umumiy xususiyatlarga ega:

  • A siydik pufagi suv o'tkazuvchanligini boshqarish uchun sho'ng'in paytida qo'shilishi yoki chiqarilishi mumkin bo'lgan gazni o'z ichiga oladi.
  • Quviqqa gaz qo'shadigan vosita, odatda past bosimli to'g'ridan-to'g'ri ozuqa[1] yoki quvvatni oshiruvchi vosita[2] sho'ng'in tsilindridan past bosimli shlangdan gaz yuboradigan sho'ng'in regulyatori yoki miloddan avvalgi qovuq (lar) ga yordamchi tsilindr, inflyatsiya valfi va odatda og'zaki inflyatsiya opsiyasi bilan boshqariladi. Ular odatda gofrirovka qilingan yoki qovurg'ali kauchuk inflyatsiya shlangining oxirida joylashgan.
  • Shamollatish valfi[1] yoki vana valfi[2] miloddan avvalgi siydik pufagi (lar) idan gazning chiqarilishini yoki boshqariladigan tarzda chiqib ketishini ta'minlaydigan. Ko'pgina BC-larda kamida ikkita teshik bor: biri miloddan avvalgi tepada, ikkinchisi miloddan avvalgi pastki qismida, chunki miloddan avvalgi qismning qaysi qismiga havo ko'chib o'tishi uchun, elkada joylashgan shamollatgich g'avvos tik turganida ishlatiladi. va g'avvosning beliga yaqin joylashgan shamollatish teskari yo'nalishda ishlatiladi. Odatda og'iz inflyatsiya tizimi orqali shamollatish mumkin.
  • Agar g'avvos miloddan avval yuqoriga ko'tarilsa yoki juda ko'p gaz quysa, pufakchani puflasa, siydik pufagini avtomatik ravishda chiqarib yuboradigan ortiqcha bosimni pasaytirish valfi. Odatda bu shamollatish yoki tushirish valfining ikkilamchi funktsiyasi bo'lib, ortiqcha bosimning shikastlanishiga yo'l qo'ymaslik uchun zarur xavfsizlik xususiyati hisoblanadi.
  • Dvigatelga suzish kuchlarini o'tkazish uchun miloddan avvalgi avtotransport vositasini ta'minlash va uni ishlab chiqilgan funktsiyaga mo'ljallangan holatda ushlab turish vositasi. BC odatda g'avvos tanasida mahkamlangan kamarlar bilan yoki siydik pufagi yoki korpus bilan birlashtirilgan ko'p funktsional tizimning bir qismi sifatida saqlanadi.

Bundan tashqari, ba'zi bir miloddan avvalgi boshqa xususiyatlarga ega bo'lishi mumkin:

  • Quviqni saqlash va himoya qilish uchun qattiq to'qimachilik korpusi va boshqa tarkibiy qismlarning ko'pi biriktirilgan bo'lib, qovuqlarga kirish uchun fermuarlar mavjud.
  • Orqaga o'rnatiladigan tsilindrlarni mustahkamlash uchun kamarlar (kambandalar)
  • Plastmassa yoki metall orqa plita orqaga o'rnatishni qo'llab-quvvatlash uchun sho'ng'in tsilindrlari
  • G'avvos tik turganida va siydik pufagi puflanganida miloddan avval bosh tomon siljishini oldini olish uchun jabduqlar kamariga qo'shilishi mumkin.
  • Kummerbund - bu miloddan avvalgi tomon siljish tendentsiyasini kamaytirish uchun alternativ yondashuv bo'lib, belning atrofiga yaqinlashishini ta'minlaydi.
  • Kichik aksessuarlar yoki asboblarni olib yurish uchun cho'ntaklar
  • Integratsiyalashgan sho'ng'inni tortish tizimi - tez chiqarish mexanizmi bo'lgan qo'rg'oshin og'irliklari uchun cho'ntaklar.[3] Integratsiyalashgan og'irliklar alohida vazn kamariga bo'lgan ehtiyojni bartaraf etishi mumkin.
  • G'avvosning tortishish markazining holatini yaxshilash uchun og'irlik cho'ntaklarini kesib oling dayver trim.
  • Mashinalar, bosim o'lchagich, makaralar, kameralar va sahna, qutqarish yoki yon tomonga o'rnatiladigan tsilindrlar kabi boshqa jihozlarni qirqish uchun D halqalari yoki boshqa mahkamlash joylari
  • Favqulodda inflyatsiya tsilindrlari. Bu sho'ng'in asosiy tsilindridan to'ldirilgan kichik (taxminan 0,5 litr) havo tsilindri yoki kichik bo'lishi mumkin karbonat angidrid silindr.
  • Yaxshi ko'rinishni ta'minlash uchun aks ettiruvchi lenta.
  • Qulaylik uchun plomba.
  • Birlamchi siydik pufagi ishlamay qolganda zaxira sifatida to'ldirilgan va shamollatuvchi tarkibiy qismlarga ega ortiqcha siydik pufagi.
  • Inflyatsiya / deflyatsiya klapanining birikmasiga ulangan yoki ular bilan birlashtirilgan muqobil nafas olish gaz regulyatori.
  • Bungees qisman shishgan qanotni ushlab turish uchun
Suzuvchi sozlanishi mumkin bo'lgan ko'ylagi kiyib olgan sho'ng'in

Turlari

Ko'tarilish tarqalishiga asoslangan miloddan avvalgi uchta asosiy turi mavjud:

Suyuqlik ko'ylagi sozlanishi

Miloddan avvalgi miloddan avval shishgan horsecollar bilan yuzaki g'avvoslar

Suyuqlikni ko'tarish ko'ylagi (ABLJ) bo'yin va ko'kragiga o'rnatilgan bo'lib, belning belbog'lari va odatda oyoqlari orasiga bog'langan. Ba'zan ularni "ot yoqalari "o'xshashligi tufayli va ular tarixiy ravishda suv ostida buziladigan (shamollatuvchi) buzilish guruhidan olingan. Mae West Ikkinchi Jahon urushi avtoulovlari va g'avvoslariga chiqarilgan qutqaruv ko'ylagi.

Ular 1960-yillarda ishlab chiqilgan va asosan miloddan avvalgi qanotli va yelek tiplari bilan almashtirilgan, chunki birinchi navbatda suzish quvvati to'lganida g'avvos oldida, qisman to'ldirilganda bo'yin orqasida to'planib, g'avvosning suzish markazini siljitish tendentsiyasini keltirib chiqaradi. ga salbiy ta'sir ko'rsatadigan inflyatsiya bilan bosh tomon g'avvosning bezagi suv ostida.[4] ABLJ g'avvosning ko'kragida va bo'ynida joylashganligi, muammo yuzaga kelganda, qayg'uga tushgan, charchagan yoki ongsiz g'avvosni yuzida suzib yurish paytida suzish kompensatori konstruktsiyalarining suzish qobiliyatini eng yaxshi taqsimlashni ta'minlaydi.

Dacor Seachute BC4 noyob va yuqori qovuqlarga ega edi. Quviqning yuqori qismi bo'yin atrofida edi va uni CO bilan shishirishi mumkin edi2 sirt ko'ylagi sifatida foydalanish uchun kartrij. Pastki siydik pufagi g'avvosning oshqozon sohasi ustida bo'lgan va suv ostida suzishni boshqarish uchun regulyatordan LP gazi bilan puflangan. Ushbu tartibga solish boshqa inflyatsiya tizimlarining aksariyat qismlariga qaraganda sho'ng'in paytida trimni boshqarish uchun suzish qobiliyatini yaxshiroq taqsimlashni ta'minladi.[5]

Miloddan avvalgi davrlar

Stabilizator ko'ylagi kiygan sho'ng'in

Miloddan avvalgi yelek, pichoq ko'ylagi, stabilizator ko'ylagi, pichoq, ko'ylagi yoki (kamsituvchi tarzda) "Poodle Vest" BClar bu gavda ustki tanasi atrofida kiyib yuradigan, silindrli jabduqni o'zida mujassam etgan shishirilgan yeleklardir. Havo pufagi orqadan g'avvosning yon tomonlariga cho'ziladi.

Qopqog'i pufakchalari ba'zi g'avvoslar tomonidan ma'qullashadi, chunki ular yuzada tik holatni saqlashni osonlashtiradi. Biroq, ba'zi bir dizaynlarda puflaganda g'avvosning tanasini siqib chiqarish tendentsiyasi mavjud va ular to'liq puflaganda ko'pincha yon yoki old tomondan katta bo'ladi. Orqaga inflyatsiya BCs yon tomonlarida unchalik katta emas, lekin og'irlik va suzish taqsimotiga qarab, yuzani oldinga qarab burilgan sho'ng'inni suzib yurish tendentsiyasiga ega bo'lishi mumkin[iqtibos kerak ] agar sho'ng'in hushsiz bo'lsa yoki boshini suv ustida ushlab turolmasa, favqulodda vaziyatda yuzaga kelishi mumkin bo'lgan xavf tug'diradi.

Yelek BClar, odatda, taxminan 25 kilogrammgacha suzishni ta'minlaydi (o'lchamiga qarab) va agar ular to'g'ri o'lchamda va g'avvosga moslashtirilsa, kiyish juda qulaydir. Yelek BClar dam olish sho'ng'inlari orasida eng keng tarqalgan tur hisoblanadi, chunki ular suzishni boshqarish, og'irliklar, yordamchi vitesni biriktirish nuqtalari va tsilindrni ushlab turishni bitta tishli qutiga birlashtirishi mumkin. Sho'ng'in to'liq akvatoriya to'plamiga ega bo'lishi uchun faqat silindr va regulyatorni o'rnatishi kerak. Miloddan avvalgi ba'zi "tech-rec" (texnik va rekreatsion) yeleklar bir nechta tsilindrni - egizak to'plamlarni orqa tomonida va yonbag'irlarda s-silindrlarni D-halqalarga osib qo'yish qobiliyatiga ega. D-halqalarni ba'zi bir dizayndagi konstruktiv cheklovlar tufayli joylashtirishning egiluvchanligi yo'qligi qisman ko'proq D-halqalarni o'rnatish bilan qoplanadi, ularning ba'zilari ma'lum bir dayver uchun kerakli joyda bo'lishi mumkin.

Saralashning uchta asosiy konfiguratsiyasini ajratish mumkin:

  • Scubapro tomonidan ishlab chiqarilgan dastlabki stabilizator ko'ylagi patentida suv o'tkazgich pufagi mavjud bo'lib, u qo'llar atrofida va ryukzak atrofida havo oqishini ta'minladi - savdo belgisi ostida 360 ° oqim dizayni. Bu ishlab chiqarish uchun murakkab idror edi.[6]
  • Yelkadan yuqoridagi siydik pufagi, qo'ltiq ostiga ajratilgan bo'lib, to'la puflaganda tanasida ko'tarish qobiliyati markazi yuqori bo'lib, g'avvosni yuzasida tik turishga intiladi. Ular gavdaning old qismida, xususan, elka va ko'krak qafasida katta bo'lib, qo'llar ostidagi tomonlarga nisbatan ancha aniq.
  • Quviqni pastki orqa tomondan qo'ltiq ostiga oldinga cho'zilgan holda, lekin yelkasida ajratilgan holda va yuqori pufakchada ko'tarilish kuchi yo'q, u to'la puflaganda pastki suzish markaziga ega va to'la puflaganda sho'ng'inni orqaga burishga intiladi. sirt. Birlashtirilgan og'irlik va / yoki cho'ntaklar qo'shilganda, ular qo'l ostida juda katta hajmga ega bo'lishi mumkin, va mayda belbog'li dalgıçlar uchun, shuningdek, bel qismining old qismida, lekin ko'krak va elkama sohasida nisbatan aniq. "Qobiq" yoki siydik pufagi qopqog'i, odatda, pufakchadan ajralib turadi, uni siydik pufagini tanani atrofida nisbatan bo'shashmasdan qoldirib, to'liq puflaganda nafasni cheklashni oldini olish uchun o'rnatishi mumkin.

BC biriktirma tizimlari odatda ko'tarish kuchlari natijasida miloddan avvalgi siljishni cheklashga, shu jumladan siydik pufagi puflaganda g'avvos tik turganida bosh tomon siljish tendentsiyasini minimallashtirishga qaratilgan. Agar g'avvos og'irlik kamarini taqib olgan bo'lsa, bu g'ildirak tik turganida miloddan ko'tarilishga qarama-qarshi tomonga qarab tortadi va suv yuzasida suzayotganda g'avvos ko'ylagi ichida pastga tushishiga olib kelishi mumkin. Ushbu muammoning echimlari orasida cummerbund (keng sozlanishi belbog ') va qisqichbaqa (oyoqlar orasidagi belbog') mavjud. Tirnoq kamari, to'g'ri sozlanganda, bu siljishni oldini olishga yordam beradi, ammo favqulodda vaziyatda tushib qolsa, og'irlik kamarining g'avvosidan tushishiga yo'l qo'ymasligi mumkin. Miloddan avval kiyib olganingizdan so'ng, og'irlik kamarini belbog 'ustiga bog'lab qo'yish qiyin bo'lishi mumkin. Kummerbund bu muammodan qochishga urinishdir, chunki og'irlik kamarini unga xuddi shu tarzda bog'lab bo'lmaydi, ammo keyinchalik og'irlik kamarini kamar ostiga taqish kerak, tokka kirishga to'sqinlik qiladi yoki paltos ostidan. Kummerbundning samaradorligi yuqori torso atrofidan kichikroq bo'lgan bel qismiga bog'liq va agar u juda mahkam o'rnatilgan bo'lsa, erkin nafas olishni cheklashi mumkin.

Shamollatilgan miloddan avval bosh tomon siljish og'irliklari miloddan avvalgi og'irlik cho'ntaklarida olib borilganda kamroq muammo tug'diradi, ammo keyinchalik suv ostida teskari yo'naltirilgan g'avvosga tushganda bosh tomon siljish tendentsiyasi bo'lishi mumkin. Bu suv ostiga tushish uchun ko'p vaqt sarflamaydigan, ammo kostyumdagi havo oyoqqa oqadigan quruq kostyum inversiyasidan keyin tiklanish qiyinligini oshirishi mumkin bo'lgan oddiy dam oluvchi sho'ng'in uchun muammo emas. Miloddan avval bosh tomon siljish. Bog'ning kamari bunga yo'l qo'ymaydi.

Orqaga inflyatsiya

Orqaga inflyatsiya suzish kompensatorlari zanglamas po'latdan yasalgan orqa plita va texnik g'avvoslar orasida mashhur bo'lgan qanot tuzilishi bilan tavsiflanadi, ammo boshqa tadbirlar ham mavjud.Qanotlar yoki Orqa plita va qanot g'avvosning orqa tomoni va silindr (lar) orasiga taqilgan, shishiriladigan idrordan iborat. 1979 yilda Greg Flanagan tomonidan Shimoliy Florida g'orlari g'avvoslari uchun ixtiro qilingan va keyinchalik Uilyam Xogart Mayn tomonidan ishlab chiqilgan,[7] orqa plita va qanot konfiguratsiyasi yaqinda rivojlanmagan, ammo mosligi tufayli mashhurlikka erishgan texnik sho'ng'in bu erda tez-tez ishlatiladi, chunki texnik g'avvos tez-tez orqasida bir nechta silindrni olib yuradi va / yoki jabduqlar to'ridagi D halqalariga kesiladi. Quviq va tsilindrni yoki qayta tikuvchini jabduqlar bilan g'avvosga bog'lab qo'yilgan orqa plashka mahkamlanadi. Qanot dizayni dumaloq tomonlarini va old qismini bo'shatib, yuqori ko'tarish qobiliyatiga ega bo'lgan katta hajmli siydik pufagiga imkon beradi (60 funt / 30 litr qanotlari kam emas). Ba'zi dizaynlarda elastik ishlatiladi Internetga ulanish yoki siydik pufagi puflanmagan paytda toraytirishi uchun siydik pufagi, ammo bu qo'shimchaning xavfsizligi va foydaliligi to'g'risida tortishuvlar mavjud.[8] Orqa plashning markaz chizig'idagi teshiklar orasidagi masofa markazlar o'rtasida 11 dyuym (280 mm) da standartlangan.[7]

Boshqa orqa inflyatsiya suzuvchi kompensatorlari, asosan, siydik pufagi holati bilan farq qiluvchi tuzilishga, g'avvosga biriktirma va aksessuarlarga nisbatan ko'ylagi uslubiga o'xshaydi, u qanotga o'xshaydi, g'avvosning orqasida, yon tomonlariga yoki old tomonlariga uzatmalarsiz. .

Bir necha qisqa muddatli qattiq havo bo'limi inflyatsiyani qaytaruvchi miloddan avvalgi asrlar 1970-yillarda sotilgan.

Gibrid tartibga solish ham mumkin, u orqa tomonda suzuvchanlikning katta qismiga ega, ammo qo'llar ostidagi tomonlarga ozgina miqdorda ega.

Sidemount BCD-lari

Orqa tomonga o'rnatilgan suzuvchi kompensatorning o'zgarishi orqa plashsiz ishlatiladi yonma-yon sho'ng'in Ushbu tartib funktsional jihatdan silindr (lar) va orqa plita o'rtasida joylashgan suzuvchi kompensatorni kiyishga o'xshaydi, ammo orqa plita yoki orqaga o'rnatilgan silindr yo'q. Suzish xujayrasi yonboshlab yotadigan jabduqlar bilan g'avvos orasiga yoki jabduqlar ustiga o'rnatilishi mumkin.[9] G'avvos oldida belbog'ga o'ralgan yoki bir-biriga qisib qo'yilgan bint shnurlari bilan pufakchalarni puflaganda, qovuqning yon tomonlari yuqoriga qarab suzib yurishi taqiqlangan bo'lishi mumkin, bu esa dumba oldidan, elastik kamar hosil qiladi.

Ba'zi yonboshlab o'rnatiladigan jabduqlar, orqa plashsiz, orqa tsilindrni variant sifatida ishlatilishi mumkin.[9]

Qurilish

Barcha turdagi suzish kompensatorlari ham teri, ham korpus va siydik pufagi tartibida tayyorlangan. Ushbu ikkala qurilish tizimining mustahkamligi va zararga chidamliligi tartibni tanlashga emas, balki dizayn detallari va materiallarning sifatiga va ishlab chiqarishga ko'proq bog'liqdir, ammo parvarishlash har xil bo'lishi mumkin, chunki bitta terini tozalash, quritish va tekshirish tezroq siydik pufagi va korpusi, pufak va korpusda ekvivalenti uchun ko'proq tarkibiy qismlar mavjud bo'ladi.

Yagona teri konstruktsiyasi suzish pufagining materialini qitish uchun konstruktiv material sifatida ishlatadi, korpus va siydik pufagi konstruktsiyasi korpusni yuk ko'tarish maqsadida va uning o'rnini bosadigan qismni himoya qilish uchun ishlatadi.

Ishlash

Suzish kompensatori pufakdagi gaz hajmini sozlash bilan ishlaydi, gazni quyish uchun inflyatsiya klapani va bir yoki bir nechta deflyatsiya klapanlari yoki odatda to'g'ridan-to'g'ri nafas olayotgan gaz tsilindridan yoki og'zaki ravishda etkazib beriladigan gazni bo'shatish uchun klapanlardan foydalaniladi. , ajratilgan gaz ballonlaridan foydalanish mumkin bo'lsa-da, ekshalatsiyalangan gaz sifatida. Quviq yuzasida ijobiy suzish qobiliyatini ta'minlash uchun shishiriladi, bu esa sho'ng'in afzal ko'rilgan yo'nalishda suzishiga imkon beradi yoki sho'ng'in boshlash uchun sho'ng'in cho'kishni boshlashi uchun deflatsiya qilinadi. Sho'ng'in paytida gaz kerakli miqdordagi suzishni ta'minlash uchun xuddi shu tarzda qo'shiladi yoki tashlanadi.

Hajmi va shakli

Suzish kompensatori g'avvosga bemalol sig'ishi kerak va g'avvosning harakatlanish erkinligini cheklamasdan joyida ishonchli turishi kerak. G'avvoslar turkumiga mos ravishda osongina moslashtirishga ruxsat berish va jabduqlarni maxsus sho'ng'in kostyumidagi ma'lum bir g'avvosga eng mos keladigan darajada o'rnatish o'rtasida bir-birlari bilan to'qnashuvlar mavjud. Bu ko'ylagi uslubidagi BCD-larning o'ziga xos muammosi, ular moslashuvchanligi jihatidan kamroq sozlanishi orqa plashli jabduqlarnikiga qaraganda ancha sozlanishi, ammo sozlanishi uchun ko'proq vaqt talab etiladi.

To'liq puflangan suzuvchi kompensatorning sho'ng'in boshlanishida suvga tushadigan asbobning maksimal yuklanishi bilan va ko'p gaz sarflanishidan oldin maksimal chuqurlikda kostyumni maksimal darajada siqib qo'yishi bilan sho'ng'inni qo'llab-quvvatlashi juda muhimdir. BCDni haddan tashqari yuklaganligi sababli o'limga olib keldi. Boshqa tomondan, suzishni nazorat qilish BCD va quruq kostyumdagi amaldagi eng kam gaz miqdori bilan osonroq bo'ladi, chunki bu hajmlar chuqurlik o'zgarishi bilan o'zgaradi va neytral bo'lish uchun sozlanishi kerak.

Amaldagi neopren ko'pik hajmining o'zgarishini o'lchash suv kostyumlari gidrostatik siqilish natijasida shuni ko'rsatadiki, hajmning taxminan 30% va shuning uchun sirt suzishning 30% taxminan 10 m ichida, yana 30% 60 m atrofida yo'qoladi va hajm taxminan 65% yo'qotish bilan barqarorlashadi. 100 m.[10] Suv kostyumining to'liq suzish qobiliyatini yo'qotish dastlabki siqilmagan hajmga mutanosibdir. O'rtacha odamning yuzasi taxminan 2 m2,[11] shuning uchun 6 mm qalinlikdagi to'liq suvli kostyumning siqilmagan hajmi 1,75 x 0,006 = 0,0105 m tartibda bo'ladi3yoki taxminan 10 litr. Massa ko'pikning o'ziga xos formulasiga bog'liq bo'ladi, lekin, ehtimol, 4 kg tartibda bo'ladi, chunki sirt ustida 6 kg aniq suzish qobiliyati uchun. G'avvosning umumiy suzishga bog'liqligi uchun, odatda, osonlikcha tushishni ta'minlash uchun sho'ng'inni neytral suzishga etkazish uchun 6 kg qo'shimcha og'irlik kerak bo'ladi. 10 metrda yo'qolgan hajm taxminan 3 litr yoki 3 kg suzuvchanlik bo'lib, taxminan 6 ga ko'tariladi. kg suzish quvvati taxminan 60 metrga yo'qolgan. Bu fermer-john va sovuq suv uchun kurtka kiygan katta odam uchun bu ikki baravar ko'payishi mumkin. Ushbu suzish qobiliyatini yo'qotish neytral suzuvchanlikni chuqurlikda saqlash uchun suzish kompensatorini puflash orqali muvozanatlashtirilishi kerak.

Sho'ng'in oxirida, deyarli eng sho'ng'in nafas oladigan gazi tugagandan so'ng, eng sayoz dekompressiya to'xtash joyida neytral bo'lish imkoniyati bo'lishi kerak. Faqat zaxira gaz bilan neytral tura olishning o'zi kifoya emas, chunki zaxira gazi deyarli muammoga qadar ishlatilsa, g'avvos qiynalishni xohlamaydi yoki dekompressiyani ushlab turishga qodir emas.

G'avvosning bo'sh silindrlar bilan eng sayoz to'xtash joyida turishi uchun og'irlik etarli bo'lishi kerak va mavjud bo'lgan suzish hajmi BCD-ni to'liq silindrlarni qo'llab-quvvatlashiga imkon berishi kerak. BCD uchun mutlaq minimal hajm g'avvos ko'taradigan barcha tsilindrlarda nafas oladigan gazning umumiy massasini qo'llab-quvvatlash uchun etarli, shuningdek, chuqurlikda siqilganligi sababli yo'qolgan hajm. Bu faqat g'avvos ortiqcha vaznni ko'tarmasa etarli bo'ladi. Biroz ortiqcha vaznga ruxsat berish va biroz kattaroq hajmdagi BCD dan foydalanish osonroq, ammo agar bu ortiqcha bo'lsa, bu suzishni nazorat qilishni qiyinlashtiradi va ko'p mehnat talab qiladi va ko'proq gazdan foydalanadi, ayniqsa ko'tarilish paytida juda muhim. Dam olish uchun yoki kichik odam uchun mo'ljallangan BCD texnik sho'ng'in uchun etarli hajmga ega bo'lmasligi mumkin.

Keraksiz darajada katta BCD ko'tarilish tezligini nazorat qilishni yo'qotish xavfini tug'diradi, ayniqsa bo'sh ballonlar bilan sho'ng'in oxirida neytral suzishga imkon berish uchun zarur bo'lganidan ko'proq og'irlikni ko'tarish bilan birga. Boshqa tomondan, katta hajm sho'ng'ishdan oldin va keyin yuzada suzishda katta qulaylik va xavfsizlik beradi.

Neytral suzish qobiliyati

Sho'ng'in sho'ng'inning turli bosqichlarida uchta ko'tarilish holatini o'rnatishi kerak:[12]

  1. salbiy suzish: g'avvos tushishni yoki dengiz tubida qolishni xohlaganda. Dam olish sho'ng'inlari kamdan-kam hollarda suzish qobiliyatining defitsitiga muhtoj, ammo ba'zi bir ishlarni osonlashtirish uchun tijorat g'avvoslari og'ir bo'lishi kerak.
  2. neytral suzish: g'avvos minimal kuch sarflab, doimiy chuqurlikda qolishni xohlaganda. Bu dam olish sho'ng'inining aksariyati uchun kerakli holat.
  3. ijobiy suzish: g'avvos yuzasida suzmoqchi bo'lganida yoki ba'zi favqulodda vaziyatlarda ko'tarilish.

Salbiy suzishga erishish uchun suzuvchi uskunani olib yuradigan yoki kiyadigan g'avvoslar bo'lishi kerak vaznli qarshi turish suzish qobiliyati g'avvosning ham, jihozlarning ham.

Suv ostida bo'lsa, g'avvos ko'pincha neytral suzuvchi bo'lishi kerak va na cho'kadi va na ko'tariladi. G'avvos va jihozlar siqib chiqaradigan suvning og'irligi g'avvos va jihozlarning umumiy og'irligiga teng bo'lganda neytral suzish holati mavjud bo'ladi. G'avvos BTC ichidagi gaz hajmini va shu sababli uning suzuvchanligini sozlash orqali neytral suzish holatini saqlab qolish uchun miloddan avvalgi avtoulovdan foydalanadi, bu g'avvosning umumiy hajmini yoki vaznini o'zgartiradigan turli xil ta'sirlarga javoban:

  • Agar g'avvosning ta'sir kostyumi ko'piklangan kabi siqilgan gaz bilan to'ldirilgan materialdan tayyorlangan bo'lsa Neopren, material hajmi o'zgaradi (Boyl qonuni ) dayver tushganda va ko'tarilayotganda bosim o'zgarganda.[13] Miloddan avvalgi havo miqdori buning o'rnini to'ldirish uchun o'rnatiladi.
  • G'avvos tanasi va jihozidagi egiluvchan havo bo'shliqlarida mavjud bo'lgan gaz (miloddan avvalgi gazni ham o'z ichiga olgan holda) tushishda siqiladi va ko'tarilishda kengayadi. G'avvos odatdagidek "siqib qo'ymaslik" yoki ortiqcha narsadan ozod bo'lish uchun kosmosga yoki quruq kostyumga gaz qo'shib, bunga qarshi kurashadi. [13] Miloddan avvalgi gaz tarkibida bu boshqa tuzatishlar etarli bo'lmasa, suzishni to'g'rilash uchun o'rnatiladi.[12]
  • Sho'ng'in davom etar ekan, gaz iste'mol qilinadi sho'ng'in tsilindrlari nafas olish uskunalari. Bu massani tobora yo'qotilishini anglatadi, bu esa g'avvosni yanada suzuvchi qiladi; g'avvosning umumiy suzish qobiliyatini miloddan avvalgi havo chiqarish yo'li bilan kamaytirish kerak. Shu sababli, sho'ng'in boshida g'avvos o'z uskunasini biroz og'irligi uchun sozlashi kerak, shunda nafas olayotgan gaz og'irligi yo'qolgandan keyin neytral suzishga erishish mumkin.[14] Havo yoki nitroks standart bosimda har bir litr uchun taxminan 1,3 grammni tashkil etadi. Shunday qilib, sho'ng'in paytida havo yo'qotishidan vaznning o'zgarishi kattaligi taxminan 4,3 kg dan (9,5 funt) farq qiladi, bu po'lat 15 litrlik tsilindrning 230 bar / 3500 psi miqdoridagi havo tarkibini anglatadi (amalda zaxira talablari faqat taxminan Agar sho'ng'in rejaga kirsa, 8 funtdan nafas olinadi), kichikroq 80 fut uchun taxminan 5 funt farq3 alyuminiy-80 (AL80) tanki (ichki quvvati 11,1 litr) 200 bar / 3000 psi gacha bosim o'tkazdi va yana odatdagi havfsizlik zaxirasini qoldirib, odatda tankdagi havoning atigi 5/6 qismi ishlatilishini taxmin qiladi. favqulodda vaziyatda.

Amalda, g'avvos sho'ng'in paytida bu nazariya haqida o'ylamaydi. Neytral suzuvchi bo'lib qolish uchun gaz BC ga g'avvos manfiy (o'ta og'ir) bo'lganda qo'shiladi yoki g'avvos juda suzuvchi (juda yengil) bo'lganda miloddan avval chiqarib yuboriladi. Siqiladigan gaz oralig'i bo'lgan dayver uchun barqaror muvozanat holati mavjud emas. Chuqurlikdagi neytral suzish holatidan har qanday o'zgarish va hatto hajmdagi kichik o'zgarishlar, shu jumladan nafas olish harakati ham kuchsizroq neytral chuqurlikka olib keladi. Shunday qilib, akvariumda neytral suzishni ta'minlash doimiy va faol protsedura - muvozanatning sho'ng'in ekvivalenti, a ijobiy fikr atrof-muhit. Yaxshiyamki, g'avvosning massasi suyuqlik muhiti singari inertsiya manbai bo'lib xizmat qiladi, shuning uchun tajribali g'avvos tomonidan unchalik katta bo'lmagan bezovtaliklar (masalan, nafas olish) qoplanishi mumkin.[12]

Sho'ng'inning yangi boshlanuvchilar uchun intuitiv bo'lmagan xususiyati shundaki, sho'ng'in boshqariladigan tarzda tushganda, odatda, miloddan avvalgi gazga gaz qo'shilishi va g'avvos boshqarilayotganda ko'tarilish paytida miloddan avval chiqarib yuborilishi (chiqarib tashlanishi yoki tashlanishi) kerak. uslub. Ushbu gaz (qo'shilgan yoki chiqarilgan) chuqurlikning o'zgarishi paytida miloddan avvalgi gaz hajmini saqlab turadi; G'avvos hatto neytral ko'taruvchan bo'lib turishi uchun bu qabariq taxminan doimiy hajmda turishi kerak. Tushish paytida milodga gaz qo'shilmasa, miloddan avvalgi gaz bosim oshib borishi sababli hajmini pasaytiradi, natijada suzish kuchi pasayadi va chuqurroq tushish tezroq, g'avvos pastga tushguncha. Xuddi shu qochqin hodisa, misol ijobiy fikr, ko'tarilish paytida sodir bo'lishi mumkin, natijada nazoratsiz ko'tarilish, g'avvos bevaqt xavfsizlik (dekompressiya) bo'lmasdan to'xtaguncha. Ushbu ta'sir chuqurlik o'zgarishiga mutanosib ravishda hajm o'zgarishi eng katta bo'lgan sirt yaqinida bo'ladi.

Amaliyot bilan g'avvoslar bu muammoni minimallashtirishni o'rganadilar, bu ularning miloddan avvalgi gazlarida zarur bo'lgan gaz hajmini minimallashtirishdan boshlanadi. Bu ularning uskunalari uchun zarur bo'lgan minimal tortish vositalaridan foydalangan holda amalga oshiriladi, bu esa miloddan avvalgi gaz hajmini sho'ng'in boshida imkon qadar kamroq ushlab turadi. Sho'ng'in oldiga qarab o'zgarib turadigan, ammo silindr tarkibida cheklangan gazdan foydalanish natijasida sho'ng'in ilgarilayotganda vaznning sekin yo'qolishini qoplash uchun miloddan avvalgi tpda etarli miqdorda gaz qo'shiladi. (amalda, dam olish uchun sho'ng'in uchun bu har bir silindr uchun taxminan 2 dan 4,5 kilogrammgacha (4,4 dan 9,9 funtgacha) bo'ladi).[12]

Nafas olishni boshqarish va chuqurlikni o'zgartirish paytida gazni boshqarishni o'z ichiga olgan tajribali g'avvoslar tomonidan biroz chuqur o'rgatilgan refleksli xatti-harakatlar ishlab chiqilishi mumkin, bu esa sho'ng'in paytida minutdan daqiqagacha neytral ko'tarilishga imkon beradi, bu haqda ko'p o'ylamasdan. Malakali suv osti sho'ng'inchilarini gorizontal trimada doimiy chuqurlikni ushlab turish qobiliyati aniqlanishi mumkin. Suyuqlikni nazorat qilishning qulayligi va aniqligiga chuqurlik o'zgarishini bilish ta'sir qiladi. Aniq vizual ma'lumot mavjud bo'lganda aniqlikni boshqarish nisbatan oson, ammo yagona moslama asbobsozlik bo'lganda qiyinroq. Aksariyat akvatorlar uchun eng qiyin holatlar - bu ko'tarilish chizig'isiz suvning past qismida ko'rinishda ko'tarilish, xavfsizlik uchun chuqurlikni nazorat qilish eng muhim vaqt.

Suvdagi yo'nalish

Naytalangan suzish qobiliyatiga ega va gorizontal trim bilan suzgichlar ko'tarilgan pervazlar pastki qismga tegishi yoki bezovtalanishi ehtimoli kam

Suvga cho'mgan g'avvosning vertikal-gorizontal yo'nalishi yoki trimasi miloddan avvalgi va boshqa suzish va og'irlik tarkibiy qismlarining ta'sirida va g'avvosning tanasi, kiyim-kechak va jihozlari. Dalgıç suv ostida bo'lganida, odatda gorizontal ravishda (moyil) ko'rishni, samarali ko'rish va suzishni, lekin deyarli vertikal va ehtimol qisman yotishni, yuzada bo'lganda regulyatorsiz nafas olishni xohlaydi. trim g'avvosdagi gidrodinamik tortishish va suzish uchun zarur bo'lgan harakatlarga sezilarli ta'sir ko'rsatishi mumkin. Yuzi yuqoriga burilgan holda suzishning samarasi, taxminan, 15 ° past darajada kesilgan g'avvoslarda odatdagidek, tortishish 50% ga ko'payishi mumkin.[15]

G'avvos singari suvda suzib yurgan jismning statik va barqaror yo'nalishi uning ko'tarilish markazi va massa markazi bilan belgilanadi. Barqaror muvozanatda ular tortishish kuchi va ko'tarilish kuchi bilan siljish markazi vertikal ravishda massa markazidan yuqoriga ko'tariladi. G'avvosning umumiy suzish qobiliyati va suzish markazi miloddan avvalgi gaz hajmini o'zgartirib muntazam ravishda sozlanishi mumkin, o'pka va sho'ng'in kostyumi. G'avvosning odatdagi sho'ng'indagi massasi umuman ko'rinadigan darajada o'zgarmaydi (yuqoriga qarang - 207 bar (3000 psi) da joylashgan "alyuminiy 80" tipik sho'ng'iy kurortida 2,8 kilogramm (6,2 lb) havo yoki nitroks, shundan sho'ng'in paytida taxminan 2,3 kilogramm (5,1 lb) ishlatiladi, ammo miloddan avvalgi va sho'ng'in kostyumlaridagi kabi har qanday havo bo'shliqlari chuqurlik bosimi bilan kengayib va ​​qisqaradi. sho'ng'in og'irliklari o'tqazilgan yoki og'ir narsa ko'tarilgan.

Umuman olganda, g'avvos sho'ng'in paytida miloddan avvalgi ko'tarilish markazining pozitsiyasini biroz boshqaradi, to'la to'ldirilmagan pufak kompensatoridagi havo pufakning eng sayoz qismiga ko'tariladi, agar oqim cheklanishi bilan to'sqinlik qilinmasa. Ushbu sayoz nuqtaning holati sho'ng'in trimiga va siydik pufagi geometriyasiga bog'liq bo'ladi. Agar g'avvos suvdagi yo'nalishini o'zgartirsa, u erga etib borish uchun avval pastga tushishi shart bo'lmasa, gaz yangi yuqori qismga oqib chiqadi. Ushbu gaz harakati natijasida ba'zi bir suzuvchi kompensatorlar sho'ng'inni faol o'zgarguncha yangi holatda ushlab turishadi. Bu, ehtimol, orqaga o'rnatilgan qanotli siydik pufaklarida bo'ladi, bu erda gaz yuqori tomonga lateral oqishi va u erda qolishi mumkin. G'avvos og'irlik markazini jihozning sozlanishini sozlash orqali o'zgartirishi mumkin, bu uning konfiguratsiyasi va og'irlik holatini o'z ichiga oladi, natijada miloddan avvalgi samarali ko'tarilish joylashtirilgan joyga ta'sir qiladi. Gravitatsiya markazi.[16]

An'anaga ko'ra, og'irlik kamarlari yoki og'irlik tizimlari og'irliklari bilan yoki bellariga yaqin holda taqiladi va ularni tezda favqulodda vaziyatda qo'shimcha suzishni ta'minlash uchun ularni tezroq tashlab qo'yishga imkon beradigan bo'shatish mexanizmi bilan tartibga solinadi. Kamarga ko'tarilgan og'irlik g'avvosning massa markazining holatini o'zgartirish uchun og'irlikni oldinga yoki orqaga siljitish uchun taqsimlanishi mumkin. Systems that integrate the weights into the BCD, can provide improved comfort so long as the BCD does not have to be removed from the body of the diver, for example in an underwater emergency such as an entanglement. When a weight integrated BCD is removed, a diver wearing no weight-belt, and any type of wetsuit or dry suit, will be very buoyant.

By inflating the BC at the surface, a conscious diver may be able to easily float face-up, depending on their equipment configuration choices. A fatigued or unconscious diver can be made to float face up at the surface by adjustment of their buoyancy and weights, so the buoyancy raises the top and front of the diver's body, and the weights act at the lower back of the body. An inflated horse-collar BC always provides this orientation, but an inflated vest or wing may float the diver face-down if the center of buoyancy is behind the centre of gravity. This floating orientation is generally considered undesirable and can be minimized by relocation of some of the weights further to the rear, and using higher density cylinders (typically steel), which also move the center of mass towards the back of the diver. The BC type can also be selected with this factor in mind, selecting a style with a center of buoyancy further forward when filled, as this has the same net effect. Any or all of these options can be utilized to trim the system out to its desired characteristics[17] and many factors can contribute, such as the number and position of sho'ng'in tsilindrlari, the type of sho'ng'in kostyumi, the position and size of stage cylinders, the size and shape of the diver's body and the wearing of ankle weights, or additional dive equipment. Each of these influence a diver's preferred orientation under the water (horizontal) and at the surface (vertical) to some degree.

Inflation gas supply and consumption

The usual inflation system is through a low-pressure hose from the primary breathing gas supply, but a dedicated direct feed pony bottle was common on early buoyancy compensators, and remains an option for some models. Most BCs allow oral inflation both underwater and on the surface. This could theoretically reduce gas consumption, but is generally not considered worth the effort and slightly increased hazard of taking the DV out of the mouth underwater, and possibly having to purge it before breathing again. Oral inflation is, however, an effective alternative inflation method in case of a failure of the pressurized inflation system. Emergency inflation by expendable CO2 cartridge is provided on some BCs.

Gas consumption varies depending on the dive profile and diver skill. The minimum consumption is by a diver who uses the correct amount to neutralize buoyancy and does not waste gas by overfilling, or by excessive weighting. The actual volume of the bladder should not affect gas consumption by a skilled user, as only enough gas to achieve neutral buoyancy is needed. Deep dives will require more gas, and dives in which the diver ascends and descends by large amounts and/or frequently, will require venting for each ascent and inflation for each descent. The amount of gas used during the dive during US Navy trials was generally below 6% of the total gas consumption,[5] and the use of small dedicated cylinders for inflation was considered adequate, but not necessary.

When used with a full-face mask or helmet, oral inflation becomes impracticable or impossible, and the reliability of the inflation system becomes safety-critical. Divers wearing dry suits have an alternative gas source available if the quick-connector systems for suit and BCD are compatible.

Hazards and malfunctions

Although a correctly fitted and competently operated buoyancy compensator is one of the most important items of equipment for diver safety, convenience, and comfort, particularly for scuba divers, it is also a significant hazard if used wrongly or in case of some kinds of malfunction:

  • There is a risk that an emergency inflation cylinder can be accidentally opened during a dive causing a rapid ascent and barotrauma to the diver. Karbonat angidrid, being poisonous at high qisman bosim, could be a dangerous gas to have in a BC because the diver may inhale it from the bag underwater.[18] The risk of this happening is low, as the diver would usually be aware that the emergency inflation has been operated, and divers are no longer trained to use the BC gas as an alternative breathing gas supply. Most BCs do not have a CO2 inflation option.
  • Redundant bladders may be inadvertently filled, either by unintended action of the diver, or by malfunction of the filling mechanism, and if the failure is not recognized and dealt with promptly, this may result in a runaway uncontrolled ascent, with associated risk of dekompressiya kasalligi . There is a risk that the diver will not recognise which bladder is full and attempt to dump from the wrong one. The risk can be reduced by ensuring that the filling mechanisms are clearly distinguishable by both feel and position, and not connecting a low pressure supply hose to the reserve until needed, so it is impossible to add gas by accident. Another strategy for avoiding the problem of confusion between bladders in use is to strap the valves together and assume that both are always in use. For this to work reasonably reliably the dump valves must always be operated together.
  • Catastrophic bladder failure due to puncture, tearing, or failure of the dump valve or inflation assembly can leave the diver with inadequate buoyancy to make a safe ascent, particularly if diving deep with large gas supply and insufficient ditchable weight. The risk can be mitigated by diving in a dry suit, which can be inflated to add buoyancy in an emergency, by carrying a DSMB, which can be deployed to provide a surface float, and by using distributed ditchable weights - ditching the whole weightbelt or too much weight may result in the opposite problem of excessive buoyancy and the inability to maintain neutral buoyancy at decompression stops.
  • Inflator valve malfunction can inflate the bladder when the buoyancy is not needed, and if not recognized and dealt with promptly, can result in uncontrolled ascent with associated risk of dekompressiya kasalligi. This can happen more quickly with inflators combined with alternative demand valves as they must use a larger bore hose connector to be capable of supplying sufficient breathing gas at depth to a stressed diver. However, the standard overpressure and dump valves provided are able to vent air faster than the inflator valve can fill the bladder.[5] This can be mitigated by the ability to disconnect the inflator hose under pressure, a skill which is trained by some agencies.
  • Ineffective or poorly adjusted cambands may let the cylinder slip and it may fall off the harness. Twin cambands provide redundancy against a camband being inadvertently released.
  • Excessive gas volume, to compensate for over-weighting or carrying heavy equipment, may increase in volume during ascent faster than the diver can vent and result in a runaway ascent, particularly with large volume BCs. This is avoided by using a bladder volume which matches the buoyancy requirements, and avoiding over-weighting.
  • Some designs of BC combined with poor weight and buoyancy distribution may support an unconscious diver face down at the surface.[5]
  • In some cases an excessively large jacket BC can cause an unconscious diver to be supported face down at the surface.[5]
  • A loose-fitting BC without a crotch strap may slide up the diver and fail to keep their head out of the water at the surface, particularly in combination with a weight belt weighting system.
  • A tight cummerbund may restrict the ability of the diver to breathe freely. As the work of breathing increases with depth this may result in ineffective ventilation leading to carbon dioxide buildup, toxicity, a desperate urge to breathe, hyperventilation, and eventually panic. Panic underwater has been associated with many fatalities. A crotch strap eliminates the need for a cummerbund, but a cummerbund is more easily adjusted to fit the diver, and is popular for rental equipment.
  • Insufficient buoyancy to achieve neutral buoyancy at maximum depth of a dive due to mismatch of BC volume with weighting and wetsuit compression. This can be caused by excessive weighting or by an undersized BC. A larger volume is needed with large or multiple cylinders to compensate for the greater mass of gas which may be used during the dive.

If the diver runs out of gas while negatively buoyant, not only will they lack breathing gas for the ascent, but will also have to swim harder to ascend at a time of great stress.

Tarix

In 1957, F. G. Jensen and Willard F. Searle, Jr began testing methods for manual and automatic buoyancy compensation for the Amerika Qo'shma Shtatlari dengiz floti eksperimental sho'ng'in bo'limi (NEDU).[19] In their early tests, they determined that manual systems were more desirable due to the size of the automatic systems.[19] Later that year, the Walter Kidde and Co. sent a prototype buoyancy compensating tank for use with two cylinders to NEDU for evaluation.[20] The valves of this alyuminiy tank system leaked and testing was delayed until 1959 when it was recommended for field testing.[20]

The ABLJ was developed by Maurice Fenzy 1961 yilda.[4] Early versions were inflated by mouth underwater. Later versions had their own air inflation cylinder. Ba'zilarida bor edi karbonat angidrid inflation cartridges (a holdover, for surface use, of the Mae West flyer's lifejacket) to facilitate emergency ascent. This was abandoned when valves that allowed divers to breathe from the BC's inflation bag were introduced. The Fenzy ABLJ provided a proof of concept for buoyancy compensation, however the large-volume ring behind the diver's neck caused the jacket to ride up against the diver's throat,[iqtibos kerak ] despite the crotch strap.

In 1968, dive shop owners Joe Schuch and Jack Schammel developed a more comfortable buoyancy compensator vest that featured a smaller buoyancy ring behind the diver's head, and a midriff section with sufficient volume to lift the diver's head out of the water in the event that one or both of its CO2 cartridges were activated for emergency ascent. In 1969, the original Control Buoyancy Jacket or "CBJ" was manufactured by Waverly Air Products of Chemung, NY and sold in dive shops throughout the east coast of the United States. By 1970, a push-button inflator using air from the diver's SCUBA tank augmented the manual inflation hose.

Since 1970 most BCs have used for inflation mainly gas from one of the diver's main cylinders, and oral inflation tubes have been generally retained for contingency use (no high pressure gas left, malfunction of an inflator hose) both underwater and on the surface.

Scubapro introduced the stabilizer jacket in 1971, with a patented "360° flow through design", which allowed air to flow over the shoulders and under the arms, and around the cylinder mount.[21][22] Later products from competitors avoided patent infringement by eliminating some of the air path options, such as separating the bladder under the arms or over the shoulders.[6] These modifications also simplified the structure of the bladder. One of these later models was the Seatec Manta, with shoulder buckles and a softpac structure (without a rigid backpack)[6]

In 1972, Watergill developed the At Pac wing, the first wing-style BC, which was provided with a cummerbund and padded shoulder straps, and an integrated weight system.[6]

In 1985 Seaquest, Inc. introduced the Advanced Design Vest (ADV), a design featuring an under-arm wrap, shoulder buckles and a cummerbund. This design was duplicated by other manufacturers and continues to be produced as of 2013 [6]

Rigid shell back inflation buoyancy compensators were marketed by U.S Divers (UDS-I system) and Dacor (CV Nautilus)for a short period in the mid 70s. The Nautilus had an automatic inflation system using a regulator to maintain a constant volume, but the changes in buoyancy due to wetsuit compression and gas usage were not well compensated and the system never caught on.[6]

More recent innovations for jacket BCs include weight pouches to adjust trim, carrying the weights on the BC rather than on a weightbelt, integrated regulators, heavily reinforced 1050 inkor qiluvchi ballistik neylon. Innovatsiyalar backplate and wing include redundant bladders, stainless steel backplates, lightweight soft neylon backplates, and 85 lb lift bladders. Some of these have improved safety or convenience.

Dive Rite marketed the first commercially manufactured backplates in 1984,[7] and a wing for diving twin cylinders in 1985.[iqtibos kerak ] Other tech diving wing manufacturers include Ocean Management Systems, Halcyon, Apeks va Oxycheq. Other BC manufacturers include Shervud, Zeagle, Scubapro, Mares, AP sho'ng'in va Cressisub.

Shuningdek qarang

Other buoyancy related equipment

There are other types of equipment worn by divers that affect buoyancy:

  • Backplate - Orqaga o'rnatiladigan suvosti jabduqlar turi
  • Sho'ng'in tsilindri - Sho'ng'in uchun nafas olish gazini saqlash va etkazib berish uchun ishlatiladigan yuqori bosimli siqilgan gaz balloni
  • Sho'ng'inni tortish tizimi - Suv osti sho'ng'inlari va sho'ng'in uskunalari tomonidan ko'tarilishning oldini olish uchun balast
  • Quruq kostyum – Watertight clothing that seals the wearer from cold and hazardous liquids
  • Suv kiyimi – Garment for water activities, providing thermal insulation but not designed to prevent water entering

Adabiyotlar

  1. ^ a b European terminology
  2. ^ a b North American terminology
  3. ^ "Mares SLS Slide And Lock Weight Pocket System". SDS Scuba Equipment. Olingan 12 iyun 2018.
  4. ^ a b Historicizing Lifestyle: Mediating Taste, Consumption and Identity from the 1900s to 1970s (Hardcover), Raptures of the Deep: Leisure, Lifestyle and Lure of Sixties Diving by Bill Osgeby ISBN  978-0-7546-4441-5
  5. ^ a b v d e Middleton, J. R. (1980). "Evaluation of Commercially Available Buoyancy Compensators". www.dtic.mil/. US Department of Defense Technical Information Center. Olingan 5 iyun 2013.
  6. ^ a b v d e f McLean, David. (2006) History of buoyancy compensators https://drive.google.com/?tab=wo&authuser=0#folders/0B3Z4b8qrjCTWSkJWd1N6YW5udTQ accessed 2 December 2013"Arxivlangan nusxa" (PDF). Arxivlandi asl nusxasi (PDF) 2012-06-26. Olingan 2011-12-22.CS1 maint: nom sifatida arxivlangan nusxa (havola)
  7. ^ a b v Lunn, Rosemary E. (24 March 2016). "#TBT – How The 11 Inch Standard Was Born – By Rosemary E Lunn". TecRec Blog. Olingan 1 yanvar 2018.
  8. ^ Discussion of Bungied Wings, aka Bondage Wings
  9. ^ a b Kakuk, Brayan; Heinerth, Jill (2010). Yon o'rnatish rejimlari. High Springs, FL: Heinerth Productions. ISBN  978-0-9798789-5-4.
  10. ^ Bardy, Erik; Mollendorf, Joseph; Pendergast, David (October 21, 2005). "Thermal conductivity and compressive strain of foam neoprene insulation under hydrostatic pressure". Fizika jurnali D: Amaliy fizika. 38 (20): 3832–3840. Bibcode:2005JPhD...38.3832B. doi:10.1088/0022-3727/38/20/009.
  11. ^ Gallo, Richard L. (June 2017). "Human Skin Is the Largest Epithelial Surface for Interaction with Microbes". Tergov dermatologiyasi jurnali. 137 (6): 1213–1214. doi:10.1016/j.jid.2016.11.045. PMC  5814118. PMID  28395897.
  12. ^ a b v d Lippmann, John. "The Ups and Downs of Buoyancy Control". Divers Alert Network medical articles. Divers Alert Network S.E. Osiyo-Tinch okeani. Olingan 23 may 2016.
  13. ^ a b Williams, Guy; Acott, Chris J. (2003). "Exposure suits: a review of thermal protection for the recreational diver". Janubiy Tinch okeanining suv osti tibbiyoti jamiyati jurnali. 33 (1). ISSN  0813-1988. OCLC  16986801. Arxivlandi asl nusxasi 2011-07-27 da. Olingan 2009-06-13.
  14. ^ Fead, L (1979). "Is dropping your weight belt the right response?". South Pacific Underwater Medicine Society Journal (Reprinted From: NAUI News, September 1978). 9 (1). ISSN  0813-1988. OCLC  16986801. Olingan 2009-06-13.
  15. ^ Passmore, M. A.; Rickers, G. (2002). "Drag levels and energy requirements on a SCUBA diver". Sports Engineering. Oxford, UK: Blackwell Science Ltd. 5 (4): 173–182. doi:10.1046/j.1460-2687.2002.00107.x.
  16. ^ Swimming Position Centroid Calculation Methodology illustration from huntzinger.com
  17. ^ Surface Buoyancy Moment Arm illustration from huntzinger.com
  18. ^ http://www.emedmag.com/html/pre/tox/0500.asp Arxivlandi 2007-07-18 da Orqaga qaytish mashinasi CO2 Toxicity
  19. ^ a b Jensen, FG; Searle, Willard F (1957). "Buoyancy Control of Open Circuit Scuba". Amerika Qo'shma Shtatlari dengiz floti eksperimental sho'ng'in bo'linmasi texnik hisoboti. NEDU-RR-8-57. Olingan 2009-06-13.
  20. ^ a b Janney, G. M; Hanger, G. W (1960). "Walter Kiddie and Co. - Buoyancy Compensating Tank". Amerika Qo'shma Shtatlari dengiz floti eksperimental sho'ng'in bo'linmasi texnik hisoboti. NEDU-Evaluation-7-60. Olingan 2009-06-13.
  21. ^ Xanauer, Erik (1994). Sho'ng'in kashshoflari: Amerikada sho'ng'in bo'yicha og'zaki tarix. Aqua Quest Publications, Inc. ISBN  9780922769438.
  22. ^ Krestovnikoff, Miranda; Halls, Monty (2008). Akvalang yordamida suv ostida suzish. Eyewitness Companions. Dorling Kindersley Ltd. ISBN  9781405334099.

Qo'shimcha o'qish

Tashqi havolalar